論文の概要: SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation
- arxiv url: http://arxiv.org/abs/2408.05435v1
- Date: Sat, 10 Aug 2024 04:39:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 19:01:07.718557
- Title: SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation
- Title(参考訳): SuperEncoder:Universal Neural Approximate Quantum State Preparationを目指して
- Authors: Yilun Zhao, Bingmeng Wang, Wenle Jiang, Xiwei Pan, Bing Li, Yinhe Han, Ying Wang,
- Abstract要約: トレーニング済みのニューラルネットワークを利用して任意の量子状態に対してQSP回路を直接生成できることが示される。
我々の研究は、近似QSPのための普遍的ニューラルデザイナに向けて着実に進んでいる。
- 参考スコア(独自算出の注目度): 12.591173729459427
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Numerous quantum algorithms operate under the assumption that classical data has already been converted into quantum states, a process termed Quantum State Preparation (QSP). However, achieving precise QSP requires a circuit depth that scales exponentially with the number of qubits, making it a substantial obstacle in harnessing quantum advantage. Recent research suggests using a Parameterized Quantum Circuit (PQC) to approximate a target state, offering a more scalable solution with reduced circuit depth compared to precise QSP. Despite this, the need for iterative updates of circuit parameters results in a lengthy runtime, limiting its practical application. In this work, we demonstrate that it is possible to leverage a pre-trained neural network to directly generate the QSP circuit for arbitrary quantum state, thereby eliminating the significant overhead of online iterations. Our study makes a steady step towards a universal neural designer for approximate QSP.
- Abstract(参考訳): 多数の量子アルゴリズムは、古典的なデータが既に量子状態に変換されたという仮定のもとに動作し、量子状態準備(Quantum State prepared, QSP)と呼ばれるプロセスである。
しかし、正確なQSPを達成するには、量子ビット数と指数関数的にスケールする回路深さが必要であり、量子的優位性を利用する上ではかなりの障害となる。
近年の研究では、パラメータ化量子回路(PQC)を用いて目標状態を近似し、精度の高いQSPに比べて回路深さを小さくしたよりスケーラブルなソリューションを提案する。
それにもかかわらず、回路パラメータの反復的な更新の必要性により、実行時間が長くなり、実用的利用が制限される。
本研究では、事前学習されたニューラルネットワークを利用して任意の量子状態のQSP回路を直接生成し、オンライン反復の大幅なオーバーヘッドを解消できることを実証する。
我々の研究は、近似QSPのための普遍的ニューラルデザイナに向けて着実に進んでいる。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
原理として、指数関数的にスケールする多電子波関数を線形にスケールする量子ビットレジスタに符号化することは、従来の量子化学法の限界を克服するための有望な解決策を提供する。
基底状態量子アルゴリズムが実用的であるためには、量子ビットの初期化が要求される基底状態の高品質な近似に必須である。
量子状態準備(QSP)は、古典的な計算から得られる近似固有状態の生成を可能にするが、量子情報のオラクルとして頻繁に扱われる。
論文 参考訳(メタデータ) (2023-11-06T18:53:50Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - GSQAS: Graph Self-supervised Quantum Architecture Search [0.18899300124593643]
既存の量子アーキテクチャ探索(QAS)アルゴリズムは、探索プロセス中に多数の量子回路を評価する必要がある。
本稿では,自己教師型学習に基づく予測器を訓練するグラフ自己教師型QASであるGSQASを提案する。
GSQASは最先端の予測器ベースのQASより優れており、ラベル付き回路が少なくて性能が良い。
論文 参考訳(メタデータ) (2023-03-22T08:35:28Z) - Realization of quantum signal processing on a noisy quantum computer [0.4593579891394288]
本稿では,各ステップのオーバヘッドコストを慎重に削減し,ノイズの多い量子ハードウェア上でQSPプロトコル全体を実行する戦略を提案する。
本プロトコルは,ハネウェル方式の量子関数H1-1の量子コンピュータ上で,このアルゴリズムを動作させることにより検証する。
この結果はQSPに基づく量子アルゴリズムの実験的な実現の第一歩である。
論文 参考訳(メタデータ) (2023-03-09T19:00:17Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - Natural parameterized quantum circuit [0.0]
ユークリッド量子幾何で初期化できる自然パラメータ化量子回路(NPQC)を導入する。
一般的な量子回路のクラスでは、NPQC は最小の量子クラム・ラオ境界を持つ。
私たちの結果は、現在利用可能な量子プロセッサを強化するために利用できます。
論文 参考訳(メタデータ) (2021-07-29T14:54:04Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。