論文の概要: Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases
- arxiv url: http://arxiv.org/abs/2109.05909v1
- Date: Mon, 13 Sep 2021 12:32:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 05:30:58.304260
- Title: Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases
- Title(参考訳): 量子位相認識のための超伝導量子プロセッサ上の量子畳み込みニューラルネットワークの実現
- Authors: Johannes Herrmann, Sergi Masot Llima, Ants Remm, Petr Zapletal, Nathan
A. McMahon, Colin Scarato, Francois Swiadek, Christian Kraglund Andersen,
Christoph Hellings, Sebastian Krinner, Nathan Lacroix, Stefania Lazar,
Michael Kerschbaum, Dante Colao Zanuz, Graham J. Norris, Michael J. Hartmann,
Andreas Wallraff, Christopher Eichler
- Abstract要約: 量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
- 参考スコア(独自算出の注目度): 2.1465372441653354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing crucially relies on the ability to efficiently characterize
the quantum states output by quantum hardware. Conventional methods which probe
these states through direct measurements and classically computed correlations
become computationally expensive when increasing the system size. Quantum
neural networks tailored to recognize specific features of quantum states by
combining unitary operations, measurements and feedforward promise to require
fewer measurements and to tolerate errors. Here, we realize a quantum
convolutional neural network (QCNN) on a 7-qubit superconducting quantum
processor to identify symmetry-protected topological (SPT) phases of a spin
model characterized by a non-zero string order parameter. We benchmark the
performance of the QCNN based on approximate ground states of a family of
cluster-Ising Hamiltonians which we prepare using a hardware-efficient,
low-depth state preparation circuit. We find that, despite being composed of
finite-fidelity gates itself, the QCNN recognizes the topological phase with
higher fidelity than direct measurements of the string order parameter for the
prepared states.
- Abstract(参考訳): 量子コンピューティングは、量子ハードウェアによって出力される量子状態を効率的に特徴づける能力に依存している。
これらの状態を直接測定し、古典的に計算された相関関係を調べる従来の手法は、システムサイズを増加させると計算コストが高くなる。
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワード約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
ここでは、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相(SPT)位相を同定する。
我々は,QCNNの性能を,ハードウェア効率,低深度状態準備回路を用いて構築したクラスタイジング・ハミルトン系の近似基底状態に基づいてベンチマークする。
有限忠実性ゲートからなるにもかかわらず、qcnnは準備状態の弦次数パラメータを直接測定するよりも、位相的位相を高い忠実性で認識する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation [12.591173729459427]
トレーニング済みのニューラルネットワークを利用して任意の量子状態に対してQSP回路を直接生成できることが示される。
我々の研究は、近似QSPのための普遍的ニューラルデザイナに向けて着実に進んでいる。
論文 参考訳(メタデータ) (2024-08-10T04:39:05Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases [0.0]
パラメトリック化量子回路、測定、フィードフォワードに基づく量子ニューラルネットワークは、大量の量子データを処理できる。
量子畳み込みニューラルネットワーク(QCNN)を構築し,異なる対称性で保護された位相を認識できる。
QCNNの出力は閾値誤差確率以下の対称性破り誤差に対して頑健であることを示す。
論文 参考訳(メタデータ) (2023-07-07T16:47:02Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
量子コンピュータ上での単位ステップ関数の形で非線形性を近似するための振幅に基づく実装を提案する。
より先進的な量子アルゴリズムに埋め込まれた場合、古典的コンピュータから直接入力を受ける2つの異なる回路タイプを量子状態として記述する。
論文 参考訳(メタデータ) (2022-06-07T07:14:12Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z) - Attention-based Quantum Tomography [9.818293236208413]
Attention-based Quantum Tomography は、アテンション機構に基づく生成ネットワークを用いた量子状態再構成である。
AQTは、IBMQ量子コンピュータで実験的に実現されたノイズ量子状態に関連する密度行列を正確に再構成可能であることを示す。
論文 参考訳(メタデータ) (2020-06-22T17:50:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。