論文の概要: Predicting Long-Term Allograft Survival in Liver Transplant Recipients
- arxiv url: http://arxiv.org/abs/2408.05437v1
- Date: Sat, 10 Aug 2024 04:44:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 19:01:07.713084
- Title: Predicting Long-Term Allograft Survival in Liver Transplant Recipients
- Title(参考訳): 肝移植患者における長期同種移植の生存予測
- Authors: Xiang Gao, Michael Cooper, Maryam Naghibzadeh, Amirhossein Azhie, Mamatha Bhat, Rahul G. Krishnan,
- Abstract要約: 移植後5年以内に肝移植患者の約20%に肝移植不全が発生する。
我々は,他の先進的生存モデルよりも優れた線形リスクスコアであるMAS(Model for Allograft Survival)を導入する。
- 参考スコア(独自算出の注目度): 11.680219281917076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Liver allograft failure occurs in approximately 20% of liver transplant recipients within five years post-transplant, leading to mortality or the need for retransplantation. Providing an accurate and interpretable model for individualized risk estimation of graft failure is essential for improving post-transplant care. To this end, we introduce the Model for Allograft Survival (MAS), a simple linear risk score that outperforms other advanced survival models. Using longitudinal patient follow-up data from the United States (U.S.), we develop our models on 82,959 liver transplant recipients and conduct multi-site evaluations on 11 regions. Additionally, by testing on a separate non-U.S. cohort, we explore the out-of-distribution generalization performance of various models without additional fine-tuning, a crucial property for clinical deployment. We find that the most complex models are also the ones most vulnerable to distribution shifts despite achieving the best in-distribution performance. Our findings not only provide a strong risk score for predicting long-term graft failure but also suggest that the routine machine learning pipeline with only in-distribution held-out validation could create harmful consequences for patients at deployment.
- Abstract(参考訳): 移植後5年以内に肝移植を受けた患者のうち約20%に肝移植が失敗し、死亡や再移植の必要性が生じる。
移植後ケアを改善するためには,移植失敗の個別化リスク推定のための正確かつ解釈可能なモデルの提供が不可欠である。
この目的のために、我々は、他の先進的生存モデルよりも優れた単純な線形リスクスコアである、Allograft Survival (MAS) モデルを導入する。
米国(米国)の長期患者追跡データを用いて, 肝移植患者82,959名を対象に, マルチサイト評価を行った。
さらに、米国以外のコーホートを別々にテストすることにより、様々なモデルの配布外一般化性能を、追加の微調整なしで検証し、臨床展開にとって重要な特性である。
最も複雑なモデルは、分配性能が最高であるにもかかわらず、分配シフトに対して最も脆弱なモデルでもある。
本研究は, 長期的移植失敗の予測に強いリスクスコアを与えるだけでなく, 患者に有害な結果をもたらす可能性も示唆した。
関連論文リスト
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
本研究では,変分オートエンコーダ (VAE) と長手VAE (LVAE) をトランスフォーマーエンコーダとコックス比例ハザードモジュールに結合してリスク予測を行う手法であるSeqRiskを提案する。
SeqRiskは、シミュレーションと実世界の両方のデータセットにおける既存のアプローチと比較して、競合的に機能することを示した。
論文 参考訳(メタデータ) (2024-09-19T12:35:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - A Transformer-Based Deep Learning Approach for Fairly Predicting
Post-Liver Transplant Risk Factors [19.00784227522497]
肝移植は、末期肝疾患患者の救命法である。
現在のスコアシステムは、90日以内に臓器を受け取らなければ患者の死亡リスクを評価する。
心血管疾患や慢性拒絶などの移植後リスク因子は移植後の合併症である。
論文 参考訳(メタデータ) (2023-04-05T22:54:26Z) - Fairly Predicting Graft Failure in Liver Transplant for Organ Assigning [61.30094367351618]
肝移植は肝疾患に対して必要不可欠な治療法である。
機械学習モデルは不公平であり、特定のグループに対する偏見を引き起こす可能性がある。
本研究は,肝移植における移植不全予測を目的とした,公正な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-18T18:24:58Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Predicting Kidney Transplant Survival using Multiple Feature
Representations for HLAs [5.081264894734788]
本稿では,HLA情報を機械学習に基づく生存分析アルゴリズムに組み込む生体関連特徴表現を提案する。
提案したHLAの特徴表現を10万以上の移植のデータベースで評価し,予測精度を約1%向上させた。
論文 参考訳(メタデータ) (2021-03-04T20:22:47Z) - Learning $\mathbf{\mathit{Matching}}$ Representations for Individualized
Organ Transplantation Allocation [98.43063331640538]
臓器アロケーションと移植結果の観察データを用いて,臓器マッチングのためのデータ駆動型ルールの学習問題を定式化する。
本稿では,表現学習に基づくモデルを提案し,ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ドナー/ド
本モデルは,ヒトの専門家が実施する最先端のアロケーション手法やポリシーより優れる。
論文 参考訳(メタデータ) (2021-01-28T01:33:21Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
集中治療室(ICU)における死亡リスクの動的評価は、患者を階層化し、治療効果を知らせたり、早期警戒システムの一部として機能したりすることができる。
現状の確率モデルと競合する結果を示すとともに,2~9倍のトレーニング時間を大幅に短縮する。
論文 参考訳(メタデータ) (2020-11-02T10:13:59Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z) - Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation [5.050648346154715]
心臓外科における現在の予後リスクスコアは統計に基づいており、まだ機械学習の恩恵を受けていない。
本研究は,TAVI後の患者の1年間の死亡率を予測する機械学習モデルの構築を目的とする。
論文 参考訳(メタデータ) (2020-01-08T10:04:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。