論文の概要: What Matters in Autonomous Driving Anomaly Detection: A Weakly Supervised Horizon
- arxiv url: http://arxiv.org/abs/2408.05562v1
- Date: Sat, 10 Aug 2024 14:04:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 18:21:45.955772
- Title: What Matters in Autonomous Driving Anomaly Detection: A Weakly Supervised Horizon
- Title(参考訳): 自動運転車の異常検出で何が重要か:極端に監督された水平線
- Authors: Utkarsh Tiwari, Snehashis Majhi, Michal Balazia, François Brémond,
- Abstract要約: 自律走行シナリオにおけるビデオ異常検出(VAD)は重要な課題であるが、エゴ中心のビューと移動カメラのためにいくつかの課題が伴う。
弱教師付きVOD法の最近の進歩は、静的カメラシナリオにおける重要な現実世界の異常の検出において顕著な進歩を見せている。
自動運転VADの弱制御手法開発を促進することを目的としている。
- 参考スコア(独自算出の注目度): 12.88166582566313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video anomaly detection (VAD) in autonomous driving scenario is an important task, however it involves several challenges due to the ego-centric views and moving camera. Due to this, it remains largely under-explored. While recent developments in weakly-supervised VAD methods have shown remarkable progress in detecting critical real-world anomalies in static camera scenario, the development and validation of such methods are yet to be explored for moving camera VAD. This is mainly due to existing datasets like DoTA not following training pre-conditions of weakly-supervised learning. In this paper, we aim to promote weakly-supervised method development for autonomous driving VAD. We reorganize the DoTA dataset and aim to validate recent powerful weakly-supervised VAD methods on moving camera scenarios. Further, we provide a detailed analysis of what modifications on state-of-the-art methods can significantly improve the detection performance. Towards this, we propose a "feature transformation block" and through experimentation we show that our propositions can empower existing weakly-supervised VAD methods significantly in improving the VAD in autonomous driving. Our codes/dataset/demo will be released at github.com/ut21/WSAD-Driving
- Abstract(参考訳): 自律走行シナリオにおけるビデオ異常検出(VAD)は重要な課題であるが、エゴ中心のビューと移動カメラのためにいくつかの課題が伴う。
そのため、未発見のままである。
近年, 静止カメラシナリオにおける重要な実世界の異常を検出するために, 弱教師付きVAD法の開発が著しい進展を見せている一方で, 移動カメラVADの開発と検証はいまだに行われていない。
これは主に、弱い教師付き学習のトレーニング前条件に従わないDoTAのような既存のデータセットが原因である。
本稿では,自律運転VADの弱制御手法開発を促進することを目的としている。
我々は、DoTAデータセットを再編成し、カメラのシナリオの移動に対して、最近の強力な弱教師付きVAD手法を検証することを目的としている。
さらに,最先端手法の変更によって検出性能が大幅に向上するかどうかを詳細に分析する。
そこで我々は,「機能転換ブロック」を提案し,実験を通じて,我々の提案する提案が,自律運転におけるVADの改善に大きく貢献することを示す。
コード/データセット/デモはgithub.com/ut21/WSAD-Drivingでリリースされる
関連論文リスト
- Hard Cases Detection in Motion Prediction by Vision-Language Foundation Models [16.452638202694246]
本研究は、自動運転におけるハードケースの検出におけるビジョン・ランゲージ・ファンデーション・モデル(VLM)の可能性を探るものである。
設計したプロンプトで逐次画像フレームを供給し,課題のあるエージェントやシナリオを効果的に識別する,実現可能なパイプラインを提案する。
NuScenesデータセット上で、パイプラインを最先端の手法に組み込むことの有効性と可能性を示す。
論文 参考訳(メタデータ) (2024-05-31T16:35:41Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving [15.486799633600423]
AutoFedは、自動運転車のマルチモーダルセンサーデータをフル活用するためのフレームワークである。
本研究では, 未知の物体を背景として誤って扱うことを避けるために, 擬似ラベルを用いた新しいモデルを提案する。
また、欠落したデータモダリティを補うために、オートエンコーダに基づくデータ計算手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T01:31:53Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Self-supervised Video Object Segmentation [76.83567326586162]
本研究の目的は、半教師付きビデオオブジェクトセグメンテーション(高密度トラッキング)の解決を目的とした自己教師付き表現学習である。
i) 従来の自己教師型アプローチを改善すること、(ii) オンライン適応モジュールによる自己教師型アプローチの強化により、空間的時間的不連続性によるトラッカーのドリフトを緩和すること、(iv) DAVIS-2017とYouTubeの自己教師型アプローチで最先端の結果を示すこと、などが提案されている。
論文 参考訳(メタデータ) (2020-06-22T17:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。