論文の概要: VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision
- arxiv url: http://arxiv.org/abs/2412.14446v1
- Date: Thu, 19 Dec 2024 01:53:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:32:51.680203
- Title: VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision
- Title(参考訳): VLM-AD:ビジョンランゲージモデルによるエンドツーエンド自動運転
- Authors: Yi Xu, Yuxin Hu, Zaiwei Zhang, Gregory P. Meyer, Siva Karthik Mustikovela, Siddhartha Srinivasa, Eric M. Wolff, Xin Huang,
- Abstract要約: 教師としての視覚言語モデル(VLM)。
VLM-ADは、nuScenesデータセットの計画精度と衝突率の大幅な改善を実現している。
- 参考スコア(独自算出の注目度): 20.43366384946928
- License:
- Abstract: Human drivers rely on commonsense reasoning to navigate diverse and dynamic real-world scenarios. Existing end-to-end (E2E) autonomous driving (AD) models are typically optimized to mimic driving patterns observed in data, without capturing the underlying reasoning processes. This limitation constrains their ability to handle challenging driving scenarios. To close this gap, we propose VLM-AD, a method that leverages vision-language models (VLMs) as teachers to enhance training by providing additional supervision that incorporates unstructured reasoning information and structured action labels. Such supervision enhances the model's ability to learn richer feature representations that capture the rationale behind driving patterns. Importantly, our method does not require a VLM during inference, making it practical for real-time deployment. When integrated with state-of-the-art methods, VLM-AD achieves significant improvements in planning accuracy and reduced collision rates on the nuScenes dataset.
- Abstract(参考訳): ヒューマンドライバは、多様で動的な現実のシナリオをナビゲートするために、常識推論に依存する。
既存のエンドツーエンド(E2E)自律運転(AD)モデルは通常、基礎となる推論プロセスを捉えることなく、データで観察される駆動パターンを模倣するように最適化されている。
この制限は、挑戦的な運転シナリオを扱う能力を制限する。
このギャップを埋めるために,教師として視覚言語モデル(VLM)を活用する手法であるVLM-ADを提案する。
このような監督は、駆動パターンの背後にある理論的根拠を捉えたよりリッチな特徴表現を学習する能力を高める。
重要なこととして,本手法は推論中にVLMを必要としないため,リアルタイムデプロイメントに有効である。
最先端の手法と統合すると、VLM-ADは、nuScenesデータセット上での計画精度と衝突率の大幅な改善を実現する。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving [12.004604110512421]
視覚言語モデル(VLM)は、自律運転に影響を与える大きな可能性を持つ革命的ツールとして出現している。
本稿では,駆動ビデオを生成するためのDriveGenVLMフレームワークを提案し,それらを理解するためにVLMを使用する。
論文 参考訳(メタデータ) (2024-08-29T15:52:56Z) - Hard Cases Detection in Motion Prediction by Vision-Language Foundation Models [16.452638202694246]
本研究は、自動運転におけるハードケースの検出におけるビジョン・ランゲージ・ファンデーション・モデル(VLM)の可能性を探るものである。
設計したプロンプトで逐次画像フレームを供給し,課題のあるエージェントやシナリオを効果的に識別する,実現可能なパイプラインを提案する。
NuScenesデータセット上で、パイプラインを最先端の手法に組み込むことの有効性と可能性を示す。
論文 参考訳(メタデータ) (2024-05-31T16:35:41Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
模倣学習によって訓練された視覚ベースのエンドツーエンドの運転モデルは、自動運転のための安価なソリューションにつながる可能性がある。
トレーニング中に損失項を追加することにより、これらのモデルの注意を誘導し、運転品質を向上させる方法について検討する。
従来の研究とは対照的に,本手法では,テスト期間中にこれらの有意義なセマンティックマップを利用できない。
論文 参考訳(メタデータ) (2024-04-30T23:18:51Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - Prospective Role of Foundation Models in Advancing Autonomous Vehicles [19.606191410333363]
大規模ファンデーションモデル(FM)は自然言語処理やコンピュータビジョンを含む多くの分野において顕著な成果を上げている。
本稿では,自動運転におけるFMの応用と今後の動向について述べる。
論文 参考訳(メタデータ) (2023-12-08T15:35:24Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
自律運転システムは、世界の抽象的な記述を形成するために、様々なセンサから収集した情報を効果的に活用すべきである。
オートエンコーダのようなディープラーニングモデルは、受信データのストリームからコンパクトな潜在表現を学習できるため、その目的のために使用できる。
この研究は、自動エンコーダとリカレントニューラルネットワークを組み合わせて現在の潜伏表現を学習する、複合dynAmicautoencodeRネットワークアーキテクチャであるCARNetを提案する。
論文 参考訳(メタデータ) (2022-05-18T04:15:42Z) - UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning [1.1339580074756188]
オフライン強化学習(RL)は、オフラインデータから意思決定を学ぶためのフレームワークを提供する。
自動運転車(SDV)は、おそらく準最適データセットの振る舞いよりも優れるポリシーを学ぶ。
これはモデルベースのオフラインRLアプローチの使用を動機付け、プランニングを活用する。
論文 参考訳(メタデータ) (2021-11-22T10:37:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。