Exploring Applications of State Space Models and Advanced Training Techniques in Sequential Recommendations: A Comparative Study on Efficiency and Performance
- URL: http://arxiv.org/abs/2408.05606v1
- Date: Sat, 10 Aug 2024 18:09:10 GMT
- Title: Exploring Applications of State Space Models and Advanced Training Techniques in Sequential Recommendations: A Comparative Study on Efficiency and Performance
- Authors: Mark Obozov, Makar Baderko, Stepan Kulibaba, Nikolay Kutuzov, Alexander Gasnikov,
- Abstract summary: This research focuses on three promising directions in sequential recommendations.
The first is to enhance speed through the use of State Space Models (SSM), as they can achieve SOTA results in the sequential recommendations domain with lower latency, memory, and inference costs.
The second is to improve the quality of recommendations with Large Language Models (LLMs), via Monolithic Preference Optimization without Reference Model (ORPO), and implementing adaptive batch- and step-size algorithms to reduce costs and accelerate training processes.
- Score: 41.677784966514686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems aim to estimate the dynamically changing user preferences and sequential dependencies between historical user behaviour and metadata. Although transformer-based models have proven to be effective in sequential recommendations, their state growth is proportional to the length of the sequence that is being processed, which makes them expensive in terms of memory and inference costs. Our research focused on three promising directions in sequential recommendations: enhancing speed through the use of State Space Models (SSM), as they can achieve SOTA results in the sequential recommendations domain with lower latency, memory, and inference costs, as proposed by arXiv:2403.03900 improving the quality of recommendations with Large Language Models (LLMs) via Monolithic Preference Optimization without Reference Model (ORPO); and implementing adaptive batch- and step-size algorithms to reduce costs and accelerate training processes.
Related papers
- Towards Improved Preference Optimization Pipeline: from Data Generation to Budget-Controlled Regularization [14.50339880957898]
We aim to improve the preference optimization pipeline by taking a closer look at preference data generation and training regularization techniques.
For preference data generation, we propose an iterative pairwise ranking mechanism that derives preference ranking of completions using pairwise comparison signals.
For training regularization, we observe that preference optimization tends to achieve better convergence when the LLM predicted likelihood of preferred samples gets slightly reduced.
arXiv Detail & Related papers (2024-11-07T23:03:11Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings [7.207685588038045]
Sequential recommendation models have achieved state-of-the-art performance using self-attention mechanism.
Moving beyond only using item ID and positional embeddings leads to a significant accuracy boost when predicting the next item.
We introduce a mix-attention mechanism with a layer-wise noise injection (LNI) regularization to improve the model's robustness and generalization.
arXiv Detail & Related papers (2024-09-08T08:27:22Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation [18.75561256311228]
RecBLR is an Efficient Sequential Recommendation Model based on Behavior-Dependent Linear Recurrent Units.
Our model significantly enhances user behavior modeling and recommendation performance.
arXiv Detail & Related papers (2024-06-18T13:06:58Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis [0.7428236410246183]
We investigate optimized convolutional neural networks (CNNs) developed for automatic modulation classification (AMC) of wireless signals.
We propose optimized models with the combinations of these techniques to fuse the complementary optimization benefits.
The experimental results show that the proposed individual and combined optimization techniques are highly effective for developing models with significantly less complexity.
arXiv Detail & Related papers (2024-04-11T06:08:23Z) - EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
Current Sequential Recommender Systems (SRSs) suffer from computational and resource inefficiencies.
We develop the Elastic Architecture Search for Efficient Long-term Sequential Recommender Systems (EASRec)
EASRec introduces data-aware gates that leverage historical information from input data batch to improve the performance of the recommendation network.
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.