論文の概要: Evaluating BM3D and NBNet: A Comprehensive Study of Image Denoising Across Multiple Datasets
- arxiv url: http://arxiv.org/abs/2408.05697v1
- Date: Sun, 11 Aug 2024 04:54:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 15:57:51.977589
- Title: Evaluating BM3D and NBNet: A Comprehensive Study of Image Denoising Across Multiple Datasets
- Title(参考訳): BM3DとNBNetの評価:複数データセット間の画像デノイングに関する総合的研究
- Authors: Ghazal Kaviani, Reza Marzban, Ghassan AlRegib,
- Abstract要約: 本稿では,ブロックマッチング3Dで表現される従来の非学習手法と,NBNetで例証した現代の学習手法との比較を行った。
これらのアプローチは、CURE-OR、CURE-TSR、Set-12、Chest-Xrayなど、さまざまなデータセットにわたって評価する。
BM3Dは曖昧な課題のようなシナリオに優れるが、NBNetは低露光や過剰露光のような複雑なノイズ環境においてより効果的である。
- 参考スコア(独自算出の注目度): 10.15569443251672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates image denoising, comparing traditional non-learning-based techniques, represented by Block-Matching 3D (BM3D), with modern learning-based methods, exemplified by NBNet. We assess these approaches across diverse datasets, including CURE-OR, CURE-TSR, SSID+, Set-12, and Chest-Xray, each presenting unique noise challenges. Our analysis employs seven Image Quality Assessment (IQA) metrics and examines the impact on object detection performance. We find that while BM3D excels in scenarios like blur challenges, NBNet is more effective in complex noise environments such as under-exposure and over-exposure. The study reveals the strengths and limitations of each method, providing insights into the effectiveness of different denoising strategies in varied real-world applications.
- Abstract(参考訳): 本稿では,ブロックマッチング3D(BM3D)に代表される従来の非学習手法と,NBNetに代表される現代の学習手法との比較を行った。
これらのアプローチは、CURE-OR、CURE-TSR、SSID+、Set-12、Chest-Xrayなど、さまざまなデータセットにまたがって評価され、それぞれ独自のノイズ課題が提示される。
本分析では,画像品質評価(IQA)の指標を7つ採用し,物体検出性能への影響について検討した。
BM3Dは曖昧な課題のようなシナリオに優れるが、NBNetは低露光や過剰露光のような複雑なノイズ環境においてより効果的である。
本研究は, 各手法の強みと限界を明らかにし, 様々な実世界の応用において, 異なる復調戦略の有効性について考察する。
関連論文リスト
- Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
ニューラルサーフェス・コンストラクション(NSR)の最近の進歩は、ボリュームレンダリングと組み合わせることで、マルチビュー・コンストラクションを著しく改善している。
本稿では,多種多様な視覚的タスクから価値ある特徴を活用すべく,特徴レベルの一貫した損失について検討する。
DTU と EPFL を用いて解析した結果,画像マッチングと多視点ステレオデータセットによる特徴が,他のプリテキストタスクよりも優れていたことが判明した。
論文 参考訳(メタデータ) (2024-08-04T16:09:46Z) - Unleashing the Power of Self-Supervised Image Denoising: A Comprehensive Review [7.387921606240273]
ディープラーニングの出現は、画像装飾技術に革命的変革をもたらした。
実世界のシナリオにおける教師付き手法のためのノイズクリーンなペアの獲得という永続的な課題は、いまだに厳しいままである。
本稿では,効率的な解決策を提供する自己教師型画像認識手法に焦点を当てる。
論文 参考訳(メタデータ) (2023-08-01T03:00:36Z) - A Comparison of Image Denoising Methods [23.69991964391047]
我々は、異なるアプリケーションのための合成データセットと実世界のデータセットの様々なデノベーション手法を比較した。
単純な行列に基づくアルゴリズムは, テンソルのアルゴリズムと比較して, 同様の結果が得られる可能性が示唆された。
近年の進歩にもかかわらず、既存の技術の欠点と拡張の可能性について論じる。
論文 参考訳(メタデータ) (2023-04-18T13:41:42Z) - Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising [6.314790045423454]
ノイズ2コントラストは、複数の計測画像コントラストからの情報を組み合わせて、デノナイジングモデルを訓練する。
画像のコントラストの独立雑音実現を利用して、ドメイン転送演算子と重畳することで、自己監督的損失を導出する。
実測データを用いた実験は,ノイズ2コントラストが他のマルチコントラスト画像に一般化されることを示唆している。
論文 参考訳(メタデータ) (2022-12-09T13:03:24Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
そこで本研究では,実世界の画像認識のための単純なベイズディープアンサンブル(BDE)手法を提案する。
我々のBDEは、最先端の復調法よりも+0.28dBPSNRのゲインを達成している。
我々のBDEは他の画像復元タスクにも拡張でき、ベンチマークデータセット上で+0.30dB、+0.18dB、+0.12dB PSNRゲインを達成することができる。
論文 参考訳(メタデータ) (2022-06-08T06:19:30Z) - ISCL: Interdependent Self-Cooperative Learning for Unpaired Image
Denoising [3.796436257221662]
本論文では,ISCL (Interdependent Self-Cooperative Learning) を提案する。
ISCLは、周期的対向学習と自己監督的残差学習を組み合わせる。
そこで本研究では,isclが従来および現在のディープラーニングに基づく画像デノイジング法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-19T10:54:25Z) - A Comprehensive Comparison of Multi-Dimensional Image Denoising Methods [14.702885691557638]
合成と実世界の両方のデータセットで60以上の手法を比較した。
単純な行列ベースのアルゴリズムは、テンソルと同じような結果が得られることを示す。
合成ガウスノイズで訓練されたいくつかのモデルは、実世界のカラー画像とビデオデータセットに最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-11-06T16:28:17Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
完全畳み込み変分オートエンコーダ(VAE)に基づく復調手法であるDivNoisingを提案する。
まず, 撮像ノイズモデルをデコーダに明示的に組み込むことにより, 教師なしの雑音発生問題をVAEフレームワーク内に定式化する手法を提案する。
このようなノイズモデルは、ノイズの多いデータから測定したり、ブートストラップしたり、トレーニング中に共同学習したりすることが可能である。
論文 参考訳(メタデータ) (2020-06-10T21:28:13Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
文脈情報は人体構成や見えないキーポイントを推論する上で重要な役割を担っている。
そこで我々は,空間とチャネルのコンテキスト情報を効率的に統合するカスケードコンテキストミキサー(CCM)を提案する。
CCMの表現能力を最大化するために、我々は、強陰性な人検出マイニング戦略と共同訓練戦略を開発する。
検出精度を向上させるために,キーポイント予測を後処理するためのいくつかのサブピクセル改良手法を提案する。
論文 参考訳(メタデータ) (2020-02-03T02:24:51Z) - Deep Learning on Image Denoising: An overview [92.07378559622889]
画像認知におけるディープテクニックの比較研究を行っている。
まず、付加的な白色雑音画像に対して、深部畳み込みニューラルネットワーク(CNN)を分類する。
次に、定量的および定性的な分析の観点から、パブリック・デノゲーション・データセットの最先端の手法を比較した。
論文 参考訳(メタデータ) (2019-12-31T05:03:57Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。