Disposable-key-based image encryption for collaborative learning of Vision Transformer
- URL: http://arxiv.org/abs/2408.05737v1
- Date: Sun, 11 Aug 2024 09:55:37 GMT
- Title: Disposable-key-based image encryption for collaborative learning of Vision Transformer
- Authors: Rei Aso, Sayaka Shiota, Hitoshi Kiya,
- Abstract summary: We propose a novel method for securely training the vision transformer (ViT) with sensitive data shared from multiple clients similar to privacy-preserving federated learning.
In the proposed method, training images are independently encrypted by each client where encryption keys can be prepared by each client, and ViT is trained by using these encrypted images for the first time.
- Score: 5.762345156477736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel method for securely training the vision transformer (ViT) with sensitive data shared from multiple clients similar to privacy-preserving federated learning. In the proposed method, training images are independently encrypted by each client where encryption keys can be prepared by each client, and ViT is trained by using these encrypted images for the first time. The method allows clients not only to dispose of the keys but to also reduce the communication costs between a central server and the clients. In image classification experiments, we verify the effectiveness of the proposed method on the CIFAR-10 dataset in terms of classification accuracy and the use of restricted random permutation matrices.
Related papers
- UNIT: Unifying Image and Text Recognition in One Vision Encoder [51.140564856352825]
UNIT is a novel training framework aimed at UNifying Image and Text recognition within a single model.
We show that UNIT significantly outperforms existing methods on document-related tasks.
Notably, UNIT retains the original vision encoder architecture, making it cost-free in terms of inference and deployment.
arXiv Detail & Related papers (2024-09-06T08:02:43Z) - Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification [50.28867343337997]
This work presents a TinyML-based semantic communication framework for few-shot wireless image classification.
We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving.
meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks.
arXiv Detail & Related papers (2024-09-03T05:56:55Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - I can't see it but I can Fine-tune it: On Encrypted Fine-tuning of
Transformers using Fully Homomorphic Encryption [5.12893315783096]
We introduce BlindTuner, a privacy-preserving fine-tuning system that enables transformer training exclusively on homomorphically encrypted data for image classification.
Our findings highlight a substantial speed enhancement of 1.5x to 600x over previous work in this domain.
arXiv Detail & Related papers (2024-02-14T10:15:43Z) - Efficient Fine-Tuning with Domain Adaptation for Privacy-Preserving
Vision Transformer [6.476298483207895]
We propose a novel method for privacy-preserving deep neural networks (DNNs) with the Vision Transformer (ViT)
The method allows us not only to train models and test with visually protected images but to also avoid the performance degradation caused from the use of encrypted images.
A domain adaptation method is used to efficiently fine-tune ViT with encrypted images.
arXiv Detail & Related papers (2024-01-10T12:46:31Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
We propose a progressive learning paradigm for transformer-based variable-rate image compression.
Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively.
Our model outperforms all current variable image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed image compression methods trained from scratch.
arXiv Detail & Related papers (2023-11-23T08:29:32Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data.
This paper proposes an efficient privacy-preserving learning paradigm, where images are encrypted to become human-imperceptible, machine-recognizable''
We show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information.
arXiv Detail & Related papers (2023-06-06T13:41:37Z) - Combined Use of Federated Learning and Image Encryption for
Privacy-Preserving Image Classification with Vision Transformer [14.505867475659276]
We propose the combined use of federated learning (FL) and encrypted images for privacy-preserving image classification under the use of the vision transformer (ViT)
In an experiment, the proposed method was demonstrated to well work without any performance degradation on the CIFAR-10 and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-01-23T03:41:02Z) - An Access Control Method with Secret Key for Semantic Segmentation
Models [12.27887776401573]
A novel method for access control with a secret key is proposed to protect models from unauthorized access.
We focus on semantic segmentation models with the vision transformer (ViT), called segmentation transformer (SETR)
arXiv Detail & Related papers (2022-08-28T04:09:36Z) - An Overview of Compressible and Learnable Image Transformation with
Secret Key and Its Applications [15.206936859511]
Learnable image encryption is applicable to privacy-preserving machine learning and adversarially robust defense.
This article presents an overview of image transformation with a secret key and its applications.
arXiv Detail & Related papers (2022-01-26T15:29:51Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.