Root Cause Attribution of Delivery Risks via Causal Discovery with Reinforcement Learning
- URL: http://arxiv.org/abs/2408.05860v2
- Date: Tue, 28 Jan 2025 04:04:43 GMT
- Title: Root Cause Attribution of Delivery Risks via Causal Discovery with Reinforcement Learning
- Authors: Shi Bo, Minheng Xiao,
- Abstract summary: This paper presents a novel approach to root cause attribution of delivery risks within supply chains by integrating causal discovery with reinforcement learning.
We apply our approach to a real-world supply chain dataset demonstrating its effectiveness in uncovering the underlying causes of delivery delays.
- Score: 0.0
- License:
- Abstract: This paper presents a novel approach to root cause attribution of delivery risks within supply chains by integrating causal discovery with reinforcement learning. As supply chains become increasingly complex, traditional methods of root cause analysis struggle to capture the intricate interrelationships between various factors, often leading to spurious correlations and suboptimal decision-making. Our approach addresses these challenges by leveraging causal discovery to identify the true causal relationships between operational variables, and reinforcement learning to iteratively refine the causal graph. This method enables the accurate identification of key drivers of late deliveries, such as shipping mode and delivery status, and provides actionable insights for optimizing supply chain performance. We apply our approach to a real-world supply chain dataset, demonstrating its effectiveness in uncovering the underlying causes of delivery delays and offering strategies for mitigating these risks. The findings have significant implications for improving operational efficiency, customer satisfaction, and overall profitability within supply chains.
Related papers
- Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective [59.61868506896214]
We show that under standard data coverage assumptions, reinforcement learning is no more statistically difficult than through process supervision.
We prove that any policy's advantage function can serve as an optimal process reward model.
arXiv Detail & Related papers (2025-02-14T22:21:56Z) - Credit Risk Identification in Supply Chains Using Generative Adversarial Networks [11.125130091872046]
This study explores the application of Generative Adversarial Networks (GANs) to enhance credit risk identification in supply chains.
GANs enable the generation of synthetic credit risk scenarios, addressing challenges related to data scarcity and imbalanced datasets.
By leveraging GAN-generated data, the model improves predictive accuracy while effectively capturing dynamic and temporal dependencies in supply chain data.
arXiv Detail & Related papers (2025-01-17T18:42:46Z) - Enhancing Supply Chain Visibility with Generative AI: An Exploratory Case Study on Relationship Prediction in Knowledge Graphs [52.79646338275159]
Relationship prediction aims to increase the visibility of supply chains using data-driven techniques.
Existing methods have been successful for predicting relationships but struggle to extract the context in which these relationships are embedded.
Lack of context prevents practitioners from distinguishing transactional relations from established supply chain relations.
arXiv Detail & Related papers (2024-12-04T15:19:01Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility.
Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources.
With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks.
arXiv Detail & Related papers (2024-08-05T17:11:29Z) - Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - HKTGNN: Hierarchical Knowledge Transferable Graph Neural Network-based
Supply Chain Risk Assessment [3.439495194421287]
We propose a hierarchical knowledge transferable graph neural network-based (HKTGNN) supply chain risk assessment model.
We embed the supply chain network corresponding to individual goods in the supply chain using the graph embedding module.
Our model outperforms in experiments on a real-world supply chain dataset.
arXiv Detail & Related papers (2023-11-07T00:54:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.