What Ails Generative Structure-based Drug Design: Expressivity is Too Little or Too Much?
- URL: http://arxiv.org/abs/2408.06050v2
- Date: Mon, 03 Mar 2025 16:08:38 GMT
- Title: What Ails Generative Structure-based Drug Design: Expressivity is Too Little or Too Much?
- Authors: RafaĆ Karczewski, Samuel Kaski, Markus Heinonen, Vikas Garg,
- Abstract summary: Several generative models with elaborate training and sampling procedures have been proposed to accelerate structure-based drug design.<n>We seek to better understand this phenomenon from both theoretical and empirical perspectives.<n>A plausible counterview may attribute the underperformance of these models to their excessive parameterizations, inducing expressivity at the expense of generalization.
- Score: 28.22384118354044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several generative models with elaborate training and sampling procedures have been proposed to accelerate structure-based drug design (SBDD); however, their empirical performance turns out to be suboptimal. We seek to better understand this phenomenon from both theoretical and empirical perspectives. Since most of these models apply graph neural networks (GNNs), one may suspect that they inherit the representational limitations of GNNs. We analyze this aspect, establishing the first such results for protein-ligand complexes. A plausible counterview may attribute the underperformance of these models to their excessive parameterizations, inducing expressivity at the expense of generalization. We investigate this possibility with a simple metric-aware approach that learns an economical surrogate for affinity to infer an unlabelled molecular graph and optimizes for labels conditioned on this graph and molecular properties. The resulting model achieves state-of-the-art results using 100x fewer trainable parameters and affords up to 1000x speedup. Collectively, our findings underscore the need to reassess and redirect the existing paradigm and efforts for SBDD. Code is available at https://github.com/rafalkarczewski/SimpleSBDD.
Related papers
- HG-Adapter: Improving Pre-Trained Heterogeneous Graph Neural Networks with Dual Adapters [53.97380482341493]
"pre-train, prompt-tuning" has demonstrated impressive performance for tuning pre-trained heterogeneous graph neural networks (HGNNs)
We propose a unified framework that combines two new adapters with potential labeled data extension to improve the generalization of pre-trained HGNN models.
arXiv Detail & Related papers (2024-11-02T06:43:54Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - Expressivity and Generalization: Fragment-Biases for Molecular GNNs [42.64483757766247]
We propose the Fragment-WL test, an extension to the well-known Weisfeiler & Leman test, which enables the theoretic analysis of fragment-biased GNNs.
We develop a new GNN architecture and a fragmentation with infinite vocabulary that significantly boosts expressiveness.
We show that our model exhibits superior generalization capabilities compared to the latest transformer-based architectures.
arXiv Detail & Related papers (2024-06-12T13:41:07Z) - Consistency of Neural Causal Partial Identification [17.503562318576414]
Recent progress in Causal Models showcased how identification and partial identification of causal effects can be automatically carried out via neural generative models.
We prove consistency of partial identification via NCMs in a general setting with both continuous and categorical variables.
Results highlight the impact of the design of the underlying neural network architecture in terms of depth and connectivity.
arXiv Detail & Related papers (2024-05-24T16:12:39Z) - Empowering Counterfactual Reasoning over Graph Neural Networks through
Inductivity [7.094238868711952]
Graph neural networks (GNNs) have various practical applications, such as drug discovery, recommendation engines, and chip design.
Counterfactual reasoning is used to make minimal changes to the input graph of a GNN in order to alter its prediction.
arXiv Detail & Related papers (2023-06-07T23:40:18Z) - GCNH: A Simple Method For Representation Learning On Heterophilous
Graphs [4.051099980410583]
Graph Neural Networks (GNNs) are well-suited for learning on homophilous graphs.
Recent works have proposed extensions to standard GNN architectures to improve performance on heterophilous graphs.
We propose GCN for Heterophily (GCNH), a simple yet effective GNN architecture applicable to both heterophilous and homophilous scenarios.
arXiv Detail & Related papers (2023-04-21T11:26:24Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
We study the problem of counterfactual explanation generation on graphs.
A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed.
We propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models.
arXiv Detail & Related papers (2022-10-16T04:35:32Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Improving Robustness of Graph Neural Networks with Heterophily-Inspired
Designs [18.524164548051417]
Many graph neural networks (GNNs) are sensitive to adversarial attacks, and can suffer from performance loss if the graph structure is intentionally perturbed.
We show that in the standard scenario in which node features exhibit homophily, impactful structural attacks always lead to increased levels of heterophily.
We present two designs -- (i) separate aggregators for ego- and neighbor-embeddings, and (ii) a reduced scope of aggregation -- that can significantly improve the robustness of GNNs.
arXiv Detail & Related papers (2021-06-14T21:39:36Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Improving Molecular Graph Neural Network Explainability with
Orthonormalization and Induced Sparsity [0.0]
We propose two simple regularization techniques to apply during the training of GCNNs.
BRO encourages graph convolution operations to generate orthonormal node embeddings.
Gini regularization is applied to the weights of the output layer and constrains the number of dimensions the model can use to make predictions.
arXiv Detail & Related papers (2021-05-11T08:13:34Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
We develop graph neural networks that leverage the properties of hypercomplex feature transformation.
In particular, in our proposed class of models, the multiplication rule specifying the algebra itself is inferred from the data during training.
We test our proposed hypercomplex GNN on several open graph benchmark datasets and show that our models reach state-of-the-art performance.
arXiv Detail & Related papers (2021-03-30T18:01:06Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Learning Reasoning Strategies in End-to-End Differentiable Proving [50.9791149533921]
Conditional Theorem Provers learn optimal rule selection strategy via gradient-based optimisation.
We show that Conditional Theorem Provers are scalable and yield state-of-the-art results on the CLUTRR dataset.
arXiv Detail & Related papers (2020-07-13T16:22:14Z) - Improving Molecular Design by Stochastic Iterative Target Augmentation [38.44457632751997]
Generative models in molecular design tend to be richly parameterized, data-hungry neural models.
We propose a surprisingly effective self-training approach for iteratively creating additional molecular targets.
Our approach outperforms the previous state-of-the-art in conditional molecular design by over 10% in absolute gain.
arXiv Detail & Related papers (2020-02-11T22:40:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.