論文の概要: Utilize Transformers for translating Wikipedia category names
- arxiv url: http://arxiv.org/abs/2408.06124v1
- Date: Mon, 12 Aug 2024 13:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 13:13:27.391342
- Title: Utilize Transformers for translating Wikipedia category names
- Title(参考訳): ウィキペディアのカテゴリ名を翻訳するためのトランスフォーマーの利用
- Authors: Hoang-Thang Ta, Quoc Thang La,
- Abstract要約: ウィキペディアのカテゴリーを英語からベトナム語に翻訳する言語モデルを構築しています。
シークエンス・ツー・シーケンスアーキテクチャを持つ小型・中規模トランスフォーマーの事前訓練モデルは、カテゴリ変換のために微調整された。
- 参考スコア(独自算出の注目度): 3.254193496786389
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: On Wikipedia, articles are categorized to aid readers in navigating content efficiently. The manual creation of new categories can be laborious and time-intensive. To tackle this issue, we built language models to translate Wikipedia categories from English to Vietnamese with a dataset containing 15,000 English-Vietnamese category pairs. Subsequently, small to medium-scale Transformer pre-trained models with a sequence-to-sequence architecture were fine-tuned for category translation. The experiments revealed that OPUS-MT-en-vi surpassed other models, attaining the highest performance with a BLEU score of 0.73, despite its smaller model storage. We expect our paper to be an alternative solution for translation tasks with limited computer resources.
- Abstract(参考訳): Wikipediaでは、記事は読者が効率的にコンテンツをナビゲートするのを助けるために分類される。
新たなカテゴリを手作業で作成することは、手間と時間を要する可能性がある。
この問題に対処するため,ウィキペディアのカテゴリを英語からベトナム語に翻訳する言語モデルを構築した。
その後、シーケンシャル・ツー・シーケンスアーキテクチャを持つ小型・中規模トランスフォーマーの事前訓練モデルがカテゴリ変換のために微調整された。
実験の結果、OPUS-MT-en-viはモデルストレージが小さいにもかかわらずBLEUスコア0.73で最高性能を達成した。
コンピュータリソースが限られている翻訳タスクの代替ソリューションとして,私たちの論文が期待できる。
関連論文リスト
- Using Machine Translation to Augment Multilingual Classification [0.0]
複数の言語にまたがる分類課題に対して,機械翻訳を用いて多言語モデルを微調整する効果について検討する。
翻訳されたデータは、多言語分類器をチューニングするのに十分な品質であり、この新規な損失技術は、それなしでチューニングされたモデルよりも幾らか改善できることを示す。
論文 参考訳(メタデータ) (2024-05-09T00:31:59Z) - Transformers for Low-Resource Languages:Is F\'eidir Linn! [2.648836772989769]
一般に、ニューラルネットワークモデルは訓練データが不十分な言語ペアで実行されることが多い。
適切なパラメータを選択することで、パフォーマンスが大幅に向上することを示す。
Transformer最適化モデルでは,ベースラインRNNモデルと比較してBLEUスコアが7.8ポイント向上した。
論文 参考訳(メタデータ) (2024-03-04T12:29:59Z) - Machine Translation for Ge'ez Language [0.0]
Ge'ezのような低リソース言語の機械翻訳は、語彙外単語、ドメインミスマッチ、ラベル付きトレーニングデータの欠如といった課題に直面している。
言語関連性に基づく多言語ニューラルマシン翻訳(MNMT)モデルを開発した。
また,最新のLCMであるGPT-3.5を用いて,ファジィマッチングを用いた数ショット翻訳実験を行った。
論文 参考訳(メタデータ) (2023-11-24T14:55:23Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Continual Learning in Multilingual NMT via Language-Specific Embeddings [92.91823064720232]
共有語彙を小さな言語固有の語彙に置き換え、新しい言語の並列データに新しい埋め込みを微調整する。
元のモデルのパラメータは変更されていないため、初期言語の性能は劣化しない。
論文 参考訳(メタデータ) (2021-10-20T10:38:57Z) - Paraphrastic Representations at Scale [134.41025103489224]
私たちは、英語、アラビア語、ドイツ語、フランス語、スペイン語、ロシア語、トルコ語、中国語の訓練されたモデルをリリースします。
我々はこれらのモデルを大量のデータでトレーニングし、元の論文から大幅に性能を向上した。
論文 参考訳(メタデータ) (2021-04-30T16:55:28Z) - From Universal Language Model to Downstream Task: Improving
RoBERTa-Based Vietnamese Hate Speech Detection [8.602181445598776]
汎用のRoBERTa言語モデルを特定のテキスト分類タスクであるベトナムのヘイト音声検出に適応させるパイプラインを提案する。
実験の結果,提案パイプラインの性能が著しく向上し,0.7221 f1のベトナム人ヘイトスピーチ検出キャンペーンが達成された。
論文 参考訳(メタデータ) (2021-02-24T09:30:55Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z) - Rethinking Document-level Neural Machine Translation [73.42052953710605]
現在のモデルでは、ドキュメントレベルの翻訳に十分な能力がありますか?
適切なトレーニング技術を持つオリジナルのトランスフォーマーは,2000語の長さであっても,文書翻訳の強力な結果が得られることを観察する。
論文 参考訳(メタデータ) (2020-10-18T11:18:29Z) - Lite Training Strategies for Portuguese-English and English-Portuguese
Translation [67.4894325619275]
ポルトガル語・英語・ポルトガル語の翻訳タスクにおいて,T5などの事前学習モデルの使用について検討する。
本稿では,ポルトガル語の文字,例えばダイアレーシス,急性アクセント,墓のアクセントを表すために,英語のトークン化器の適応を提案する。
以上の結果から,本モデルは最新モデルと競合する性能を示しながら,控えめなハードウェアでトレーニングを行った。
論文 参考訳(メタデータ) (2020-08-20T04:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。