Efficient and Scalable Point Cloud Generation with Sparse Point-Voxel Diffusion Models
- URL: http://arxiv.org/abs/2408.06145v1
- Date: Mon, 12 Aug 2024 13:41:47 GMT
- Title: Efficient and Scalable Point Cloud Generation with Sparse Point-Voxel Diffusion Models
- Authors: Ioannis Romanelis, Vlassios Fotis, Athanasios Kalogeras, Christos Alexakos, Konstantinos Moustakas, Adrian Munteanu,
- Abstract summary: We propose a novel point cloud U-Net diffusion architecture for 3D generative modeling.
Our network employs a dual-branch architecture, combining the high-resolution representations of points with the computational efficiency of sparse voxels.
Our model excels in all tasks, establishing it as a state-of-the-art diffusion U-Net for point cloud generative modeling.
- Score: 6.795447206159906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel point cloud U-Net diffusion architecture for 3D generative modeling capable of generating high-quality and diverse 3D shapes while maintaining fast generation times. Our network employs a dual-branch architecture, combining the high-resolution representations of points with the computational efficiency of sparse voxels. Our fastest variant outperforms all non-diffusion generative approaches on unconditional shape generation, the most popular benchmark for evaluating point cloud generative models, while our largest model achieves state-of-the-art results among diffusion methods, with a runtime approximately 70% of the previously state-of-the-art PVD. Beyond unconditional generation, we perform extensive evaluations, including conditional generation on all categories of ShapeNet, demonstrating the scalability of our model to larger datasets, and implicit generation which allows our network to produce high quality point clouds on fewer timesteps, further decreasing the generation time. Finally, we evaluate the architecture's performance in point cloud completion and super-resolution. Our model excels in all tasks, establishing it as a state-of-the-art diffusion U-Net for point cloud generative modeling. The code is publicly available at https://github.com/JohnRomanelis/SPVD.git.
Related papers
- Make-A-Shape: a Ten-Million-scale 3D Shape Model [52.701745578415796]
This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale.
We first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme.
We derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients.
arXiv Detail & Related papers (2024-01-20T00:21:58Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
We present a novel video generative model designed to address long-term spatial and temporal dependencies.
Our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks.
Our model synthesizes high-fidelity video clips at a resolution of $256times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps.
arXiv Detail & Related papers (2024-01-11T16:48:44Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
We devise a new 3d point cloud generation framework using a divide-and-conquer approach.
All patch generators are based on learnable priors, which aim to capture the information of geometry primitives.
Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation.
arXiv Detail & Related papers (2023-07-22T11:10:39Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Flow-based GAN for 3D Point Cloud Generation from a Single Image [16.04710129379503]
We introduce a hybrid explicit-implicit generative modeling scheme, which inherits the flow-based explicit generative models for sampling point clouds with arbitrary resolutions.
We evaluate on the large-scale synthetic dataset ShapeNet, with the experimental results demonstrating the superior performance of the proposed method.
arXiv Detail & Related papers (2022-10-08T17:58:20Z) - Convolutional Neural Network-based Efficient Dense Point Cloud
Generation using Unsigned Distance Fields [3.198144010381572]
We propose a lightweight Convolutional Neural Network that learns and predicts the unsigned distance field for arbitrary 3D shapes.
Experiments demonstrate that the proposed architecture outperforms the state of the art by 7.8x less model parameters, 2.4x faster inference time and up to 24.8% improved generation quality.
arXiv Detail & Related papers (2022-03-22T08:28:50Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
Real-scanned 3D point clouds are often incomplete, and it is important to recover complete point clouds for downstream applications.
Most existing point cloud completion methods use Chamfer Distance (CD) loss for training.
We propose a novel Point Diffusion-Refinement (PDR) paradigm for point cloud completion.
arXiv Detail & Related papers (2021-12-07T06:59:06Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
We develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN)
We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges.
This decoupled architecture together with a multi-scale grid feature learning is able to generate more realistic on-surface details.
arXiv Detail & Related papers (2021-08-23T05:10:29Z) - Discrete Point Flow Networks for Efficient Point Cloud Generation [36.03093265136374]
Generative models have proven effective at modeling 3D shapes and their statistical variations.
We introduce a latent variable model that builds on normalizing flows to generate 3D point clouds of an arbitrary size.
For single-view shape reconstruction we also obtain results on par with state-of-the-art voxel, point cloud, and mesh-based methods.
arXiv Detail & Related papers (2020-07-20T14:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.