論文の概要: Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2: Adapting Video Tracking Capabilities for 3D Medical Imaging
- arxiv url: http://arxiv.org/abs/2408.06170v1
- Date: Mon, 12 Aug 2024 14:16:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 14:05:56.884340
- Title: Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2: Adapting Video Tracking Capabilities for 3D Medical Imaging
- Title(参考訳): Segment Anything Model 2を用いたCTスキャンにおける腹部臓器のゼロショット3次元分割 : 3次元画像診断におけるビデオ追跡機能の適用
- Authors: Yosuke Yamagishi, Shouhei Hanaoka, Tomohiro Kikuchi, Takahiro Nakao, Yuta Nakamura, Yukihiro Nomura, Soichiro Miki, Takeharu Yoshikawa, Osamu Abe,
- Abstract要約: 本研究の目的は,CTスキャンによる腹部臓器の3次元分画におけるSegment Anything Model 2のゼロショット性能を評価することである。
ゼロショットアプローチでは、明確な境界を持つ大きな臓器は高いセグメンテーション性能を示した。
しかし、より小さく、定義の少ない構造には改善が必要である。
- 参考スコア(独自算出の注目度): 0.4477747148398817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: This study aimed to evaluate the zero-shot performance of Segment Anything Model 2 (SAM 2) in 3D segmentation of abdominal organs in CT scans, leveraging its video tracking capabilities for volumetric medical imaging. Materials and Methods: Using a subset of the TotalSegmentator CT dataset (n=123) from 8 different institutions, we assessed SAM 2's ability to segment 8 abdominal organs. Segmentation was initiated from three different Z-coordinate levels (caudal, mid, and cranial levels) of each organ. Performance was measured using the Dice similarity coefficient (DSC). We also analyzed organ volumes to contextualize the results. Results: As a zero-shot approach, larger organs with clear boundaries demonstrated high segmentation performance, with mean(median) DSCs as follows: liver 0.821(0.898), left kidney 0.870(0.921), right kidney 0.862(0.935), and spleen 0.891(0.932). Smaller or less defined structures showed lower performance: gallbladder 0.531(0.590), pancreas 0.361(0.359), and adrenal glands 0.203-0.308(0.109-0.231). Significant differences in DSC were observed depending on the starting initial slice of segmentation for different organs. A moderate positive correlation was observed between volume size and DSCs (Spearman's rs = 0.731, P <.001 at caudal-level). DSCs exhibited high variability within organs, ranging from near 0 to almost 1.0, indicating substantial inconsistency in segmentation performance between scans. Conclusion: SAM 2 demonstrated promising zero-shot performance in segmenting certain abdominal organs in CT scans, particularly larger organs with clear boundaries. The model's ability to segment previously unseen targets without additional training highlights its potential for cross-domain generalization in medical imaging. However, improvements are needed for smaller and less defined structures.
- Abstract(参考訳): 目的:CT画像における腹部臓器の3次元分割におけるSegment Anything Model 2 (SAM2) のゼロショット性能を評価することを目的とした。
対象と方法:8施設のTotalSegmentator CTデータセット(n=123)のサブセットを用いて,SAM2の腹腔内8臓器分画能力を評価した。
各臓器の3つの異なるZ座標レベル(内耳,中頭,頭蓋)からセグメンテーションを開始した。
The Dice similarity coefficient (DSC) was measured using the Dice similarity coefficient。
また,結果の文脈化のために臓器体積を分析した。
結果: 肝 0.821(0.898), 左腎 0.870(0.921), 右腎 0.862(0.935), 脾 0.891(0.932),
胆嚢0.531(0.590),膵0.361(0.359),副腎 0.203-0.308(0.109-0.231。
臓器の分節開始開始率によってDSCに有意な差が認められた。
体積サイズとDSC (Spearman's rs = 0.731, P <.001) の間には適度な正の相関が認められた。
DSCは0から1.0付近の臓器内で高い変動を示し、スキャン間のセグメンテーション性能にかなりの矛盾が認められた。
結語:SAM 2は腹部CT検査,特に境界が明瞭な大臓器において,腹腔内臓器の分画において有望なゼロショット性能を示した。
このモデルでは、未確認のターゲットを追加の訓練なしにセグメント化できる能力は、医療画像におけるクロスドメインの一般化の可能性を強調している。
しかし、より小さく、定義の少ない構造には改善が必要である。
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - MRISegmentator-Abdomen: A Fully Automated Multi-Organ and Structure Segmentation Tool for T1-weighted Abdominal MRI [12.236789438183138]
複数の臓器や構造のボクセルレベルのアノテーションを備えた腹部MRIデータセットは公開されていない。
MRISegmentator-Abdomen(略してMRISegmentator)と呼ばれる3D nnUNetモデルをこのデータセットでトレーニングした。
このツールは、T1強調腹部MRIの62の臓器と構造の、自動的、正確で、堅牢なセグメンテーションを提供する。
論文 参考訳(メタデータ) (2024-05-09T17:33:09Z) - Kidney abnormality segmentation in thorax-abdomen CT scans [4.173079849880476]
腎腺腫と腎異常を鑑別するための深層学習手法を提案する。
胸腹部CTで215例の造影CT検査を施行した。
Diceスコアが0.965, 0.947となり, 腎発作を2つの検体で分けた。
論文 参考訳(メタデータ) (2023-09-06T22:04:07Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Automated segmentation of 3-D body composition on computed tomography [0.0]
VAT,SAT,IMAT,SM,骨の5種類の異なる体組成を手動でアノテートした。
畳み込みニューラルネットワーク(CNN)の性能評価と評価に10倍のクロスバリデーション法が用いられた。
3つのCNNモデルの中で、UNetは5つのボディ構成を共同でセグメント化する上で、最高の全体的な性能を示した。
論文 参考訳(メタデータ) (2021-12-16T15:38:27Z) - Leveraging Clinical Characteristics for Improved Deep Learning-Based
Kidney Tumor Segmentation on CT [0.0]
本研究は, 腎癌の自動分節化を画像診断に加え, 臨床的特徴を用いることで改善できるかどうかを考察する。
造影CT検査および臨床像を施行した腎癌患者300名を含む。
セグメンテーションの改善のために臨床特性を活用するために,認識型サンプリング戦略が用いられた。
論文 参考訳(メタデータ) (2021-09-13T09:38:22Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random
Anatomical Prior [4.177877537413942]
粗密な腹部マルチオルガンセグメンテーションは、高解像度セグメンテーションの抽出を容易にします。
複数の臓器に対応するモデルに代えて,全腹部臓器を分節する単一改良モデルを提案する。
提案手法は,平均diceスコアが84.58%と,81.69% (p0.0001) の13モデルにおいて,最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-23T00:22:05Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
本研究の目的は、患者固有の幻覚やデジタル双眼鏡の自動作成のための新しいフレームワーク、iPhantomを開発し、検証することである。
この枠組みは、個々の患者のCT画像における放射線感受性臓器への放射線線量を評価するために応用される。
iPhantomは、アンカーオルガンのDice similarity Coefficients (DSC) >0.6の精度で全ての臓器の位置を正確に予測し、他のオルガンのDSCは0.3-0.9である。
論文 参考訳(メタデータ) (2020-08-20T01:50:49Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。