論文の概要: Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2
- arxiv url: http://arxiv.org/abs/2408.06170v3
- Date: Tue, 24 Sep 2024 07:50:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 11:38:16.853346
- Title: Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2
- Title(参考訳): Segment Anything Model 2 を用いたCTスキャンにおける腹部臓器のゼロショット3次元分割
- Authors: Yosuke Yamagishi, Shouhei Hanaoka, Tomohiro Kikuchi, Takahiro Nakao, Yuta Nakamura, Yukihiro Nomura, Soichiro Miki, Takeharu Yoshikawa, Osamu Abe,
- Abstract要約: 我々は,8施設のTotalSegmentator CTデータセットのサブセットを用いて,SAM2の腹腔内臓器の分画能力を評価した。
The Dice similarity coefficient (DSC) and " negative prompts" were analyzed。
肝 0.821 pm 0.192,右腎 0.862 pm 0.212,左腎 0.870 pm 0.154,脾 0.891 pm 0.131。
- 参考スコア(独自算出の注目度): 0.4477747148398817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objectives: To evaluate the zero-shot performance of Segment Anything Model 2 (SAM 2) in 3D segmentation of abdominal organs in CT scans, and to investigate the effects of prompt settings on segmentation results. Materials and Methods: In this retrospective study, we used a subset of the TotalSegmentator CT dataset from eight institutions to assess SAM 2's ability to segment eight abdominal organs. Segmentation was initiated from three different z-coordinate levels (caudal, mid, and cranial levels) of each organ. Performance was measured using the Dice similarity coefficient (DSC). We also analyzed the impact of "negative prompts," which explicitly exclude certain regions from the segmentation process, on accuracy. Results: 123 patients (mean age, 60.7 \pm 15.5 years; 63 men, 60 women) were evaluated. As a zero-shot approach, larger organs with clear boundaries demonstrated high segmentation performance, with mean DSCs as follows: liver 0.821 \pm 0.192, right kidney 0.862 \pm 0.212, left kidney 0.870 \pm 0.154, and spleen 0.891 \pm 0.131. Smaller organs showed lower performance: gallbladder 0.531 \pm 0.291, pancreas 0.361 \pm 0.197, and adrenal glands, right 0.203 \pm 0.222, left 0.308 \pm 0.234. The initial slice for segmentation and the use of negative prompts significantly influenced the results. By removing negative prompts from the input, the DSCs significantly decreased for six organs. Conclusion: SAM 2 demonstrated promising zero-shot performance in segmenting certain abdominal organs in CT scans, particularly larger organs. Performance was significantly influenced by input negative prompts and initial slice selection, highlighting the importance of optimizing these factors.
- Abstract(参考訳): 目的:CTスキャンにおける腹部臓器の3次元分割におけるSegment Anything Model 2 (SAM2) のゼロショット性能を評価し, セグメンテーション結果に対する即時設定の影響について検討する。
材料と方法:本研究では,8施設のTotalSegmentator CTデータセットのサブセットを用いて,SAM2が腹腔内臓器を分節する能力を評価する。
各臓器の3つの異なるz座標レベル(内耳,中頭,頭蓋)からセグメンテーションを開始した。
The Dice similarity coefficient (DSC) was measured using the Dice similarity coefficient。
また,セグメント化過程から特定の領域を明示的に排除する「負のプロンプト」の精度への影響を解析した。
結果:123例(平均年齢60.7歳15.5歳,男性63名,女性60名)について検討した。
ゼロショットアプローチでは, 肝0.821 pm 0.192, 右腎0.862 pm 0.212, 左腎0.870 pm 0.154, 脾0.891 pm 0.131であった。
胆嚢0.531 pm 0.291,膵0.361 pm 0.197,副腎0.203 pm 0.222,左0.308 pm 0.234であった。
セグメンテーションの初期スライスと負のプロンプトの使用は結果に大きな影響を及ぼした。
入力から陰性のプロンプトを除去することにより,6臓器に対してDSCは有意に低下した。
結語:SAM 2は,CTスキャン,特に大臓器において,特定の腹部臓器の分画において有望なゼロショット性能を示した。
性能は入力負のプロンプトと初期スライス選択に大きく影響され、これらの要因を最適化することの重要性を強調した。
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - MRISegmentator-Abdomen: A Fully Automated Multi-Organ and Structure Segmentation Tool for T1-weighted Abdominal MRI [12.236789438183138]
複数の臓器や構造のボクセルレベルのアノテーションを備えた腹部MRIデータセットは公開されていない。
MRISegmentator-Abdomen(略してMRISegmentator)と呼ばれる3D nnUNetモデルをこのデータセットでトレーニングした。
このツールは、T1強調腹部MRIの62の臓器と構造の、自動的、正確で、堅牢なセグメンテーションを提供する。
論文 参考訳(メタデータ) (2024-05-09T17:33:09Z) - Kidney abnormality segmentation in thorax-abdomen CT scans [4.173079849880476]
腎腺腫と腎異常を鑑別するための深層学習手法を提案する。
胸腹部CTで215例の造影CT検査を施行した。
Diceスコアが0.965, 0.947となり, 腎発作を2つの検体で分けた。
論文 参考訳(メタデータ) (2023-09-06T22:04:07Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Automated segmentation of 3-D body composition on computed tomography [0.0]
VAT,SAT,IMAT,SM,骨の5種類の異なる体組成を手動でアノテートした。
畳み込みニューラルネットワーク(CNN)の性能評価と評価に10倍のクロスバリデーション法が用いられた。
3つのCNNモデルの中で、UNetは5つのボディ構成を共同でセグメント化する上で、最高の全体的な性能を示した。
論文 参考訳(メタデータ) (2021-12-16T15:38:27Z) - Leveraging Clinical Characteristics for Improved Deep Learning-Based
Kidney Tumor Segmentation on CT [0.0]
本研究は, 腎癌の自動分節化を画像診断に加え, 臨床的特徴を用いることで改善できるかどうかを考察する。
造影CT検査および臨床像を施行した腎癌患者300名を含む。
セグメンテーションの改善のために臨床特性を活用するために,認識型サンプリング戦略が用いられた。
論文 参考訳(メタデータ) (2021-09-13T09:38:22Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - FocusNetv2: Imbalanced Large and Small Organ Segmentation with
Adversarial Shape Constraint for Head and Neck CT Images [82.48587399026319]
organ-at-risk (oars) は、健康な臓器の損傷を避けるために放射線治療計画において重要なステップである。
本研究では,この課題を解決するために,2段階の深層ニューラルネットワークであるFocusNetv2を提案する。
従来のFocusNetに加えて,小臓器に新たな対角的形状制約を導入し,推定小臓器形状と臓器形状との整合性を確保する。
論文 参考訳(メタデータ) (2021-04-05T04:45:31Z) - RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random
Anatomical Prior [4.177877537413942]
粗密な腹部マルチオルガンセグメンテーションは、高解像度セグメンテーションの抽出を容易にします。
複数の臓器に対応するモデルに代えて,全腹部臓器を分節する単一改良モデルを提案する。
提案手法は,平均diceスコアが84.58%と,81.69% (p0.0001) の13モデルにおいて,最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-23T00:22:05Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
本研究の目的は、患者固有の幻覚やデジタル双眼鏡の自動作成のための新しいフレームワーク、iPhantomを開発し、検証することである。
この枠組みは、個々の患者のCT画像における放射線感受性臓器への放射線線量を評価するために応用される。
iPhantomは、アンカーオルガンのDice similarity Coefficients (DSC) >0.6の精度で全ての臓器の位置を正確に予測し、他のオルガンのDSCは0.3-0.9である。
論文 参考訳(メタデータ) (2020-08-20T01:50:49Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。