Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2
- URL: http://arxiv.org/abs/2408.06170v3
- Date: Tue, 24 Sep 2024 07:50:18 GMT
- Title: Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2
- Authors: Yosuke Yamagishi, Shouhei Hanaoka, Tomohiro Kikuchi, Takahiro Nakao, Yuta Nakamura, Yukihiro Nomura, Soichiro Miki, Takeharu Yoshikawa, Osamu Abe,
- Abstract summary: We used a subset of the TotalSegmentator CT dataset from eight institutions to assess SAM 2's ability to segment eight abdominal organs.
Performance was measured using the Dice similarity coefficient (DSC) and "negative prompts" were analyzed.
As a zero-shot approach, larger organs with clear boundaries demonstrated high segmentation performance, with mean DSCs as follows: liver 0.821 pm 0.192, right kidney 0.862 pm 0.212, left kidney 0.870 pm 0.154, and spleen 0.891 pm 0.131.
- Score: 0.4477747148398817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objectives: To evaluate the zero-shot performance of Segment Anything Model 2 (SAM 2) in 3D segmentation of abdominal organs in CT scans, and to investigate the effects of prompt settings on segmentation results. Materials and Methods: In this retrospective study, we used a subset of the TotalSegmentator CT dataset from eight institutions to assess SAM 2's ability to segment eight abdominal organs. Segmentation was initiated from three different z-coordinate levels (caudal, mid, and cranial levels) of each organ. Performance was measured using the Dice similarity coefficient (DSC). We also analyzed the impact of "negative prompts," which explicitly exclude certain regions from the segmentation process, on accuracy. Results: 123 patients (mean age, 60.7 \pm 15.5 years; 63 men, 60 women) were evaluated. As a zero-shot approach, larger organs with clear boundaries demonstrated high segmentation performance, with mean DSCs as follows: liver 0.821 \pm 0.192, right kidney 0.862 \pm 0.212, left kidney 0.870 \pm 0.154, and spleen 0.891 \pm 0.131. Smaller organs showed lower performance: gallbladder 0.531 \pm 0.291, pancreas 0.361 \pm 0.197, and adrenal glands, right 0.203 \pm 0.222, left 0.308 \pm 0.234. The initial slice for segmentation and the use of negative prompts significantly influenced the results. By removing negative prompts from the input, the DSCs significantly decreased for six organs. Conclusion: SAM 2 demonstrated promising zero-shot performance in segmenting certain abdominal organs in CT scans, particularly larger organs. Performance was significantly influenced by input negative prompts and initial slice selection, highlighting the importance of optimizing these factors.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MRISegmentator-Abdomen: A Fully Automated Multi-Organ and Structure Segmentation Tool for T1-weighted Abdominal MRI [12.236789438183138]
There is no publicly available abdominal MRI dataset with voxel-level annotations of multiple organs and structures.
A 3D nnUNet model, dubbed as MRISegmentator-Abdomen (MRISegmentator in short), was trained on this dataset.
The tool provides automatic, accurate, and robust segmentations of 62 organs and structures in T1-weighted abdominal MRI sequences.
arXiv Detail & Related papers (2024-05-09T17:33:09Z) - Kidney abnormality segmentation in thorax-abdomen CT scans [4.173079849880476]
We introduce a deep learning approach for segmenting kidney parenchyma and kidney abnormalities.
Our end-to-end segmentation method was trained on 215 contrast-enhanced thoracic-abdominal CT scans.
Our best-performing model attained Dice scores of 0.965 and 0.947 for segmenting kidney parenchyma in two test sets.
arXiv Detail & Related papers (2023-09-06T22:04:07Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Automated segmentation of 3-D body composition on computed tomography [0.0]
Five different body compositions were manually annotated (VAT, SAT, IMAT, SM, and bone)
Ten-fold cross-validation method was used to develop and validate the performance of several convolutional neural networks (CNNs)
Among the three CNN models, UNet demonstrated the best overall performance in jointly segmenting the five body compositions.
arXiv Detail & Related papers (2021-12-16T15:38:27Z) - Leveraging Clinical Characteristics for Improved Deep Learning-Based
Kidney Tumor Segmentation on CT [0.0]
This paper assesses whether using clinical characteristics in addition to imaging can improve automated segmentation of kidney cancer.
A total of 300 kidney cancer patients with contrast-enhanced CT scans and clinical characteristics were included.
A cognizant sampling strategy was used to leverage clinical characteristics for improved segmentation.
arXiv Detail & Related papers (2021-09-13T09:38:22Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - FocusNetv2: Imbalanced Large and Small Organ Segmentation with
Adversarial Shape Constraint for Head and Neck CT Images [82.48587399026319]
delineation of organs-at-risk (OARs) is a vital step in radiotherapy treatment planning to avoid damage to healthy organs.
We propose a novel two-stage deep neural network, FocusNetv2, to solve this challenging problem by automatically locating, ROI-pooling, and segmenting small organs.
In addition to our original FocusNet, we employ a novel adversarial shape constraint on small organs to ensure the consistency between estimated small-organ shapes and organ shape prior knowledge.
arXiv Detail & Related papers (2021-04-05T04:45:31Z) - RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random
Anatomical Prior [4.177877537413942]
coarse-to-fine abdominal multi-organ segmentation facilitates to extract high-resolution segmentation.
We propose a single refined model to segment all abdominal organs instead of multiple organ corresponding models.
Our proposed method outperforms the state-of-the-art on 13 models with an average Dice score 84.58% versus 81.69% (p0.0001)
arXiv Detail & Related papers (2020-12-23T00:22:05Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or digital-twins.
The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual patients.
iPhantom precisely predicted all organ locations with good accuracy of Dice Similarity Coefficients (DSC) >0.6 for anchor organs and DSC of 0.3-0.9 for all other organs.
arXiv Detail & Related papers (2020-08-20T01:50:49Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.