RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random
Anatomical Prior
- URL: http://arxiv.org/abs/2012.12425v2
- Date: Thu, 24 Dec 2020 01:43:14 GMT
- Title: RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random
Anatomical Prior
- Authors: Ho Hin Lee, Yucheng Tang, Shunxing Bao, Richard G. Abramson, Yuankai
Huo, Bennett A. Landman
- Abstract summary: coarse-to-fine abdominal multi-organ segmentation facilitates to extract high-resolution segmentation.
We propose a single refined model to segment all abdominal organs instead of multiple organ corresponding models.
Our proposed method outperforms the state-of-the-art on 13 models with an average Dice score 84.58% versus 81.69% (p0.0001)
- Score: 4.177877537413942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performing coarse-to-fine abdominal multi-organ segmentation facilitates to
extract high-resolution segmentation minimizing the lost of spatial contextual
information. However, current coarse-to-refine approaches require a significant
number of models to perform single organ refine segmentation corresponding to
the extracted organ region of interest (ROI). We propose a coarse-to-fine
pipeline, which starts from the extraction of the global prior context of
multiple organs from 3D volumes using a low-resolution coarse network, followed
by a fine phase that uses a single refined model to segment all abdominal
organs instead of multiple organ corresponding models. We combine the
anatomical prior with corresponding extracted patches to preserve the
anatomical locations and boundary information for performing high-resolution
segmentation across all organs in a single model. To train and evaluate our
method, a clinical research cohort consisting of 100 patient volumes with 13
organs well-annotated is used. We tested our algorithms with 4-fold
cross-validation and computed the Dice score for evaluating the segmentation
performance of the 13 organs. Our proposed method using single auto-context
outperforms the state-of-the-art on 13 models with an average Dice score 84.58%
versus 81.69% (p<0.0001).
Related papers
- A novel open-source ultrasound dataset with deep learning benchmarks for
spinal cord injury localization and anatomical segmentation [1.02101998415327]
We present an ultrasound dataset of 10,223-mode (B-mode) images consisting of sagittal slices of porcine spinal cords.
We benchmark the performance metrics of several state-of-the-art object detection algorithms to localize the site of injury.
We evaluate the zero-shot generalization capabilities of the segmentation models on human ultrasound spinal cord images.
arXiv Detail & Related papers (2024-09-24T20:22:59Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query
Embedding [15.98677736544302]
We propose a steerable, robust, and efficient computing framework for detection, identification, and segmentation of anatomies in 3D medical data.
Considering complicated shapes, sizes and orientations of anatomies, we present the nine degrees-of-freedom (9-DoF) pose estimation solution in full 3D space.
We have validated the proposed method on three medical imaging parsing tasks of ribs, spine, and abdominal organs.
arXiv Detail & Related papers (2022-12-05T04:04:21Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - FocusNetv2: Imbalanced Large and Small Organ Segmentation with
Adversarial Shape Constraint for Head and Neck CT Images [82.48587399026319]
delineation of organs-at-risk (OARs) is a vital step in radiotherapy treatment planning to avoid damage to healthy organs.
We propose a novel two-stage deep neural network, FocusNetv2, to solve this challenging problem by automatically locating, ROI-pooling, and segmenting small organs.
In addition to our original FocusNet, we employ a novel adversarial shape constraint on small organs to ensure the consistency between estimated small-organ shapes and organ shape prior knowledge.
arXiv Detail & Related papers (2021-04-05T04:45:31Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - AbdomenCT-1K: Is Abdominal Organ Segmentation A Solved Problem? [30.338209680140913]
This paper presents a large and diverse abdominal CT organ segmentation dataset, AbdomenCT-1K, with more than 1000 (1K) CT scans from 12 medical centers.
We conduct a large-scale study for liver, kidney, spleen, and pancreas segmentation and reveal the unsolved segmentation problems of the SOTA methods.
To advance the unsolved problems, we build four organ segmentation benchmarks for fully supervised, semi-supervised, weakly supervised, and continual learning.
arXiv Detail & Related papers (2020-10-28T08:15:27Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - AttentionAnatomy: A unified framework for whole-body organs at risk
segmentation using multiple partially annotated datasets [30.23917416966188]
Organs-at-risk (OAR) delineation in computed tomography (CT) is an important step in Radiation Therapy (RT) planning.
Our proposed end-to-end convolutional neural network model, called textbfAttentionAnatomy, can be jointly trained with three partially annotated datasets.
Experimental results of our proposed framework presented significant improvements in both Sorensen-Dice coefficient (DSC) and 95% Hausdorff distance.
arXiv Detail & Related papers (2020-01-13T18:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.