論文の概要: Targeted Deep Learning System Boundary Testing
- arxiv url: http://arxiv.org/abs/2408.06258v2
- Date: Sun, 11 May 2025 13:33:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.648058
- Title: Targeted Deep Learning System Boundary Testing
- Title(参考訳): 深層学習システム境界試験のターゲット化
- Authors: Oliver Weißl, Amr Abdellatif, Xingcheng Chen, Giorgi Merabishvili, Vincenzo Riccio, Severin Kacianka, Andrea Stocco,
- Abstract要約: 深層学習システム境界の詳細な探索を目的とした,新しいブラックボックステストジェネレータであるMimicryを紹介する。
Mimicryは、DL出力の確率的性質を活用して境界試験を行い、探索の有望な方向を特定する。
スタイルベースのGANを使用して、入力表現をコンテンツとスタイルコンポーネントに切り離し、制御された機能混合によって決定境界を近似することができる。
- 参考スコア(独自算出の注目度): 2.895034191799291
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Evaluating the behavioral boundaries of deep learning (DL) systems is crucial for understanding their reliability across diverse, unseen inputs. Existing solutions fall short as they rely on untargeted random, model- or latent-based perturbations, due to difficulties in generating controlled input variations. In this work, we introduce Mimicry, a novel black-box test generator for fine-grained, targeted exploration of DL system boundaries. Mimicry performs boundary testing by leveraging the probabilistic nature of DL outputs to identify promising directions for exploration. It uses style-based GANs to disentangle input representations into content and style components, enabling controlled feature mixing to approximate the decision boundary. We evaluated Mimicry's effectiveness in generating boundary inputs for five widely used DL image classification systems of increasing complexity, comparing it to two baseline approaches. Our results show that Mimicry consistently identifies inputs closer to the decision boundary. It generates semantically meaningful boundary test cases that reveal new functional (mis)behaviors, while the baselines produce mainly corrupted or invalid inputs. Thanks to its enhanced control over latent space manipulations, Mimicry remains effective as dataset complexity increases, maintaining competitive diversity and higher validity rates, confirmed by human assessors.
- Abstract(参考訳): 深層学習(DL)システムの振る舞い境界を評価することは、多様な、目に見えない入力の信頼性を理解するために不可欠である。
既存のソリューションは、制御された入力のバリエーションを生成するのに困難があるため、ターゲットのないランダム、モデルベース、潜時ベースの摂動に依存するため、不足する。
そこで本研究では,DLシステム境界の詳細な探索を目的とした,新しいブラックボックステストジェネレータであるMimicryを紹介する。
Mimicryは、DL出力の確率的性質を活用して境界試験を行い、探索の有望な方向を特定する。
スタイルベースのGANを使用して、入力表現をコンテンツとスタイルコンポーネントに切り離し、制御された機能混合によって決定境界を近似することができる。
広範に使われている5つのDL画像分類システムの境界入力生成におけるMimicryの有効性を評価し,2つのベースラインアプローチと比較した。
我々の結果は、Mimicryが決定境界に近い入力を一貫して識別していることを示している。
意味的に意味のある境界テストケースを生成し、新しい機能的(ミス)振る舞いを示し、ベースラインは主として破損または無効な入力を生成する。
遅延空間操作に対する制御の強化により、Mimicryはデータセットの複雑さが増大し、競争力の多様性と高い妥当性が維持され、人間の評価者が確認した。
関連論文リスト
- Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - Forward-Forward Learning achieves Highly Selective Latent Representations for Out-of-Distribution Detection in Fully Spiking Neural Networks [6.7236795813629]
生物学的システムにインスパイアされたスパイキングニューラルネットワーク(SNN)は、限界を克服するための有望な道を提供する。
本研究では,これらの課題に対処するために,スパイクフォワードフォワードアルゴリズム(FFA)の可能性を検討する。
本稿では,クラス分布からサンプルを遠ざける特徴を検出するための,新しい非勾配属性法を提案する。
論文 参考訳(メタデータ) (2024-07-19T08:08:17Z) - BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems [1.204357447396532]
ノベルティ・サーチ (NS) は、シミュレーションや実験を通じて様々なシステムの振る舞いを自動的に発見する探索アルゴリズムのクラスである。
このような高価なブラックボックスシステムに特化して設計されたサンプル効率のNSに対するベイズ最適化法を提案する。
提案手法は,限られたサンプル予算の下で,より大規模な多様な挙動の集合を見出すことにより,既存のNSアルゴリズムよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-06-05T20:23:52Z) - GROOD: GRadient-aware Out-Of-Distribution detection in interpolated
manifolds [12.727088216619386]
ディープニューラルネットワーク(DNN)におけるアウト・オブ・ディストリビューション検出は、現実世界のデプロイメントにおいてリスクを引き起こす可能性がある。
グラディエント・アウェア・アウトオフ・ディストリビューション検出を導入。
ネイティブ多様体(Internative manifold, GROOD)は、勾配空間の識別力に依存する新しいフレームワークである。
GRODが最先端のベースラインの確立された堅牢性を上回ることを示す。
論文 参考訳(メタデータ) (2023-12-22T04:28:43Z) - Temporal Action Localization with Enhanced Instant Discriminability [66.76095239972094]
時間的行動検出(TAD)は、すべての行動境界とその対応するカテゴリを、トリミングされていないビデオで検出することを目的としている。
本稿では,既存の手法による動作境界の不正確な予測を解決するために,TriDetという一段階のフレームワークを提案する。
実験結果から,複数のTADデータセット上でのTriDetの堅牢性と最先端性能が示された。
論文 参考訳(メタデータ) (2023-09-11T16:17:50Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis [84.7287684402508]
マルチモーダル融合に対する最近のディープラーニングアプローチは、ハイレベルおよびミドルレベルの潜在モダリティ表現のボトムアップ融合に依存している。
人間の知覚モデルでは、高レベルの表現が感覚入力の知覚に影響を及ぼすトップダウン融合の重要性を強調している。
本稿では,ネットワークトレーニング中のフォワードパスにおけるフィードバック機構を用いて,トップダウンのクロスモーダルインタラクションをキャプチャするニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-01-24T17:48:04Z) - DeepHyperion: Exploring the Feature Space of Deep Learning-Based Systems
through Illumination Search [7.302479575919379]
Illumination Searchを使って、最も優れたテストケースを見つけます。
DeepHyperion(ディープハイパーリオン)は、DLシステムのための検索ベースのツールである。
論文 参考訳(メタデータ) (2021-07-05T09:14:38Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Controlled time series generation for automotive software-in-the-loop
testing using GANs [0.5352699766206808]
オートマチックメカトロニクスシステムのテストは、部分的にはソフトウェア・イン・ザ・ループ・アプローチを使用し、システム・アンダー・テストのインプットを体系的にカバーすることが大きな課題である。
ひとつのアプローチは、テストプロセスの制御とフィードバックを容易にする入力シーケンスを作成することだが、現実的なシナリオにシステムを公開できない。
もうひとつは、現実を説明できるフィールド操作から記録されたシーケンスを再生するが、広く使われるには十分なキャパシティの十分なラベル付きデータセットを収集する必要があるため、コストがかかる。
この研究は、GAN(Generative Adrial Networks)のよく知られた教師なし学習フレームワークを適用して、記録された車内データのラベルなしデータセットを学習する。
論文 参考訳(メタデータ) (2020-02-16T16:19:29Z) - Spatial and spectral deep attention fusion for multi-channel speech
separation using deep embedding features [60.20150317299749]
マルチチャネルディープクラスタリング(MDC)は、音声分離に優れた性能を得た。
本研究では,スペクトルおよび空間的特徴の重みを動的に制御し,それらを深く結合するディープ・アテンション・フュージョン法を提案する。
実験結果から,提案手法はMDCベースラインよりも優れ,理想的なバイナリマスク(IBM)よりも優れていた。
論文 参考訳(メタデータ) (2020-02-05T03:49:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。