論文の概要: Finding Patterns in Ambiguity: Interpretable Stress Testing in the Decision~Boundary
- arxiv url: http://arxiv.org/abs/2408.06302v1
- Date: Mon, 12 Aug 2024 17:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 12:53:36.196095
- Title: Finding Patterns in Ambiguity: Interpretable Stress Testing in the Decision~Boundary
- Title(参考訳): 曖昧さのパターンを見つける: 決定における解釈可能なストレステスト -境界-
- Authors: Inês Gomes, Luís F. Teixeira, Jan N. van Rijn, Carlos Soares, André Restivo, Luís Cunha, Moisés Santos,
- Abstract要約: 本稿では,深層二元分類器の解釈可能性を高める新しい手法を提案する。
決定境界から代表サンプルを選択し,モデル後説明アルゴリズムを適用した。
私たちの研究は、信頼性の高い機械学習システムの開発と展開に寄与します。
- 参考スコア(独自算出の注目度): 3.66599628097164
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing use of deep learning across various domains highlights the importance of understanding the decision-making processes of these black-box models. Recent research focusing on the decision boundaries of deep classifiers, relies on generated synthetic instances in areas of low confidence, uncovering samples that challenge both models and humans. We propose a novel approach to enhance the interpretability of deep binary classifiers by selecting representative samples from the decision boundary - prototypes - and applying post-model explanation algorithms. We evaluate the effectiveness of our approach through 2D visualizations and GradientSHAP analysis. Our experiments demonstrate the potential of the proposed method, revealing distinct and compact clusters and diverse prototypes that capture essential features that lead to low-confidence decisions. By offering a more aggregated view of deep classifiers' decision boundaries, our work contributes to the responsible development and deployment of reliable machine learning systems.
- Abstract(参考訳): さまざまな領域にわたるディープラーニングの利用の増加は、これらのブラックボックスモデルの意思決定プロセスを理解することの重要性を強調している。
深層分類器の決定境界に焦点をあてた最近の研究は、信頼性の低い領域で生成された合成インスタンスに依存し、モデルと人間の両方に挑戦するサンプルを明らかにする。
本稿では, 決定境界(プロトタイプ)から代表サンプルを選択し, モデル後説明アルゴリズムを適用することによって, ディープバイナリ分類器の解釈可能性を高める新しい手法を提案する。
2次元可視化とグラディエントSHAP解析によるアプローチの有効性を評価した。
提案手法の可能性を実証し,低信頼度決定に繋がる重要な特徴を捉えた,明瞭でコンパクトなクラスタと多種多様なプロトタイプを明らかにした。
ディープ分類器の意思決定境界をより集約したビューを提供することで、我々の仕事は信頼性の高い機械学習システムの開発とデプロイに寄与する。
関連論文リスト
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
画像セグメンテーションの進歩は、ディープラーニングベースのコンピュータビジョンの広い範囲において重要な役割を果たす。
この文脈において不確かさの定量化が広く研究され、モデル無知(認識の不確実性)やデータ曖昧さ(アラート的不確実性)を表現し、不正な意思決定を防ぐことができる。
この研究は、分野の進歩を左右する不確実性の基本概念と様々なタスクへの応用について議論することで、確率的セグメンテーションの包括的概要を提供する。
論文 参考訳(メタデータ) (2024-11-25T13:26:09Z) - Differentiable Distributionally Robust Optimization Layers [10.667165962654996]
パラメータ化二階円錐曖昧性集合を用いた混合整数DRO問題に対する微分可能なDRO層を開発する。
本稿では,決定の連続的な部分と離散的な部分を異なる原理で扱うことによって,新しい双対ビュー手法を提案する。
具体的には、双対ビュー手法を実装し、その勾配を推定するために重要サンプリングを利用するために、微分可能エネルギーベースサロゲートを構築した。
論文 参考訳(メタデータ) (2024-06-24T12:09:19Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
マルチComprehension (MC) Ensemble は,OOD (Out-of-Distribution) 特徴表現を拡大するための戦略として提案されている。
OOD検出におけるMC Ensemble戦略の優れた性能を示す実験結果を得た。
これにより,提案手法がトレーニング分布外のインスタンスを検出できるモデルの性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2024-03-24T18:43:04Z) - Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations [13.60538902487872]
本稿では, 実例的(地域的)かつクラス的(グローバル的)な意思決定戦略をプロトタイプを通じて伝達する, ポストホックなコンセプトベースXAIフレームワークを提案する。
我々は,3つのデータセットにまたがるアウト・オブ・ディストリビューション・サンプル,突発的なモデル行動,データ品質問題同定におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-28T10:53:26Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
Semantic Contrastive Learning (SCL) と呼ばれる新しい変種を紹介します。
従来のコントラスト学習とディープクラスタリングの両方の特徴を探求する。
コントラスト学習と深層クラスタリングの強みを統一的なアプローチで増幅することができる。
論文 参考訳(メタデータ) (2021-03-03T20:20:48Z) - Interpreting Deep Learning Model Using Rule-based Method [36.01435823818395]
本稿では,ディープニューラルネットワークモデルに対する包括的解釈を提供するための多段階決定フレームワークを提案する。
各ニューロンに決定木を合わせ、それらを集約することにより、最初はマルチレベル決定構造(MLD)を構築する。
MNISTとNational Free Pre-Pregnancy Check-upデータセットの実験を行い、MDDフレームワークの有効性と解釈性を示した。
論文 参考訳(メタデータ) (2020-10-15T15:30:00Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。