論文の概要: Modular Recurrence in Contextual MDPs for Universal Morphology Control
- arxiv url: http://arxiv.org/abs/2506.08630v1
- Date: Tue, 10 Jun 2025 09:44:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.252347
- Title: Modular Recurrence in Contextual MDPs for Universal Morphology Control
- Title(参考訳): ユニバーサルモルフォロジー制御のための文脈MDPのモジュラー再帰
- Authors: Laurens Engwegen, Daan Brinks, Wendelin Böhmer,
- Abstract要約: しかし、新しい、目に見えないロボットへの一般化は依然として課題だ。
モジュール型リカレントアーキテクチャを実装し,MuJoCoロボットの大規模集合上での一般化性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A universal controller for any robot morphology would greatly improve computational and data efficiency. By utilizing contextual information about the properties of individual robots and exploiting their modular structure in the architecture of deep reinforcement learning agents, steps have been made towards multi-robot control. Generalization to new, unseen robots, however, remains a challenge. In this paper we hypothesize that the relevant contextual information is partially observable, but that it can be inferred through interactions for better generalization to contexts that are not seen during training. To this extent, we implement a modular recurrent architecture and evaluate its generalization performance on a large set of MuJoCo robots. The results show a substantial improved performance on robots with unseen dynamics, kinematics, and topologies, in four different environments.
- Abstract(参考訳): ロボット形態学のための普遍的なコントローラは、計算とデータの効率を大幅に改善するだろう。
個々のロボットの特性に関するコンテキスト情報を活用し、深層強化学習エージェントのアーキテクチャにおけるモジュール構造を活用することにより、マルチロボット制御に向けたステップが作成されている。
しかし、新しい、目に見えないロボットへの一般化は依然として課題だ。
本稿では,関連する文脈情報が部分的に観測可能であることを仮定するが,インタラクションを通じて推測することで,学習中に見えない文脈への一般化を向上することができる。
そこで本研究では,モジュール型リカレントアーキテクチャを実装し,多数のMuJoCoロボット上での一般化性能を評価する。
その結果,4つの異なる環境下でのロボットの運動学,運動学,トポロジーの大幅な向上が示された。
関連論文リスト
- Time is on my sight: scene graph filtering for dynamic environment perception in an LLM-driven robot [0.8515309662618664]
本稿では,人間とロボットのインタラクションにおける重要な課題に対処するロボット制御アーキテクチャを提案する。
アーキテクチャはLarge Language Modelsを使用して、自然言語コマンドを含む多様な情報ソースを統合する。
このアーキテクチャは、動的環境における適応性、タスク効率、人間とロボットのコラボレーションを強化する。
論文 参考訳(メタデータ) (2024-11-22T15:58:26Z) - Body Transformer: Leveraging Robot Embodiment for Policy Learning [51.531793239586165]
ボディートランスフォーマー(ボディートランスフォーマー、Body Transformer、BoT)は、学習プロセスを導く誘導バイアスを提供することで、ロボットの体現性を活用するアーキテクチャである。
我々はロボットの体をセンサーとアクチュエータのグラフとして表現し、建築全体を通してプール情報にマスキングされた注意を頼りにしている。
結果として得られるアーキテクチャは、バニラ変換器と古典的な多層パーセプトロンを、タスク完了、スケーリング特性、計算効率の点で上回る。
論文 参考訳(メタデータ) (2024-08-12T17:31:28Z) - HeteroMorpheus: Universal Control Based on Morphological Heterogeneity Modeling [12.771577344846282]
HeteroMorpheusは異種グラフ変換器に基づく新しい手法である。
政策一般化能力における最先端手法に対するHeteroMorpheusの優位性を実証する。
論文 参考訳(メタデータ) (2024-08-02T12:40:01Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
汎用ロボット行動合成のための木構造多モードコード生成フレームワークRoboCodeXを提案する。
RoboCodeXは、高レベルの人間の命令を複数のオブジェクト中心の操作ユニットに分解する。
概念的および知覚的理解を制御コマンドにマッピングする能力をさらに強化するため、事前学習のための特別なマルチモーダル推論データセットを収集し、教師付き微調整のための反復的自己更新手法を導入する。
論文 参考訳(メタデータ) (2024-02-25T15:31:43Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - MetaMorph: Learning Universal Controllers with Transformers [45.478223199658785]
ロボット工学では、主に1つのタスクのために1つのロボットを訓練します。
モジュラーロボットシステムは、汎用的なビルディングブロックをタスク最適化形態に柔軟な組み合わせを可能にする。
モジュール型ロボット設計空間上でユニバーサルコントローラを学習するためのトランスフォーマーベースのアプローチであるMetaMorphを提案する。
論文 参考訳(メタデータ) (2022-03-22T17:58:31Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。