論文の概要: LOLgorithm: Integrating Semantic,Syntactic and Contextual Elements for Humor Classification
- arxiv url: http://arxiv.org/abs/2408.06335v1
- Date: Mon, 12 Aug 2024 17:52:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 13:03:23.721441
- Title: LOLgorithm: Integrating Semantic,Syntactic and Contextual Elements for Humor Classification
- Title(参考訳): LOLgorithm:Hummor分類のための意味・構文・文脈要素の統合
- Authors: Tanisha Khurana, Kaushik Pillalamarri, Vikram Pande, Munindar Singh,
- Abstract要約: 我々は,語彙,構造統計,Word2Vec,WordNet,音声スタイルなど,特徴を構文,意味,文脈の次元に分類する。
提案モデルであるColbertはBERT埋め込みと並列隠蔽層を用いて文の一致を捉える。
SHAPの解釈と決定木は、影響のある特徴を識別し、全体論的アプローチにより、見えないデータに対するユーモア検出精度が向上することを明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores humor detection through a linguistic lens, prioritizing syntactic, semantic, and contextual features over computational methods in Natural Language Processing. We categorize features into syntactic, semantic, and contextual dimensions, including lexicons, structural statistics, Word2Vec, WordNet, and phonetic style. Our proposed model, Colbert, utilizes BERT embeddings and parallel hidden layers to capture sentence congruity. By combining syntactic, semantic, and contextual features, we train Colbert for humor detection. Feature engineering examines essential syntactic and semantic features alongside BERT embeddings. SHAP interpretations and decision trees identify influential features, revealing that a holistic approach improves humor detection accuracy on unseen data. Integrating linguistic cues from different dimensions enhances the model's ability to understand humor complexity beyond traditional computational methods.
- Abstract(参考訳): 本稿では,自然言語処理における計算手法よりも構文,意味,文脈的特徴を優先して,言語レンズによるユーモア検出について検討する。
我々は,語彙,構造統計,Word2Vec,WordNet,音声スタイルなど,特徴を構文,意味,文脈の次元に分類する。
提案モデルであるColbertはBERT埋め込みと並列隠蔽層を用いて文の一致を捉える。
統語的、意味的、文脈的特徴を組み合わせることで、ユーモア検出のためにコルバートを訓練する。
特徴工学はBERT埋め込みと共に、重要な構文的および意味的特徴を調べる。
SHAPの解釈と決定木は、影響のある特徴を識別し、全体論的アプローチにより、見えないデータに対するユーモア検出精度が向上することを明らかにした。
異なる次元から言語的手がかりを統合することで、従来の計算方法を超えてユーモアの複雑さを理解する能力が向上する。
関連論文リスト
- Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue [71.15186328127409]
パラリンGPT(Paralin GPT)
モデルは、シリアライズされたマルチタスクフレームワーク内の入力プロンプトとして、テキスト、音声埋め込み、およびパラ言語属性の会話コンテキストを取る。
音声対話データセットとして,感情ラベルをパラ言語属性として含むSwitchboard-1コーパスを利用する。
論文 参考訳(メタデータ) (2023-12-23T18:14:56Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
このような相互作用を探索するためのケーススタディとして,作用性のセマンティックな概念を提示する。
これは、LMが言語アノテーション、理論テスト、発見のためのより有用なツールとして役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T16:24:01Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
テキストが仮説を包含するのは、仮説の真の価値がテキストに従う場合に限る。
本稿では,テキストと仮説のテキストの包含関係を同定する新しい手法を提案する。
本手法では,テキスト・ハイブリッド・ペア間の意味的含意関係を識別できる要素ワイド・マンハッタン距離ベクトルベースの特徴を用いる。
論文 参考訳(メタデータ) (2022-10-18T10:03:51Z) - Corpus-Guided Contrast Sets for Morphosyntactic Feature Detection in
Low-Resource English Varieties [3.3536302616846734]
コーパス誘導編集による効率的なコントラストセットの生成とフィルタリングを行う。
我々は、インド英語とアフリカ系アメリカ人の英語の特徴検出を改善し、言語研究をいかに支援できるかを実証し、他の研究者が使用するための微調整されたモデルをリリースすることを示した。
論文 参考訳(メタデータ) (2022-09-15T21:19:31Z) - Compositional Generalization in Grounded Language Learning via Induced
Model Sparsity [81.38804205212425]
グリッド環境における単純な言語条件のナビゲーション問題について考察する。
本研究では,オブジェクトの指示文と属性のスパース相関を助長するエージェントを設計し,それらを組み合わせて目的を導出する。
我々のエージェントは、少数のデモンストレーションから学習した場合でも、新しいプロパティの組み合わせを含む目標に対して高いレベルのパフォーマンスを維持している。
論文 参考訳(メタデータ) (2022-07-06T08:46:27Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between
Corpora [14.844685568451833]
TextEssenceは、埋め込みを用いたコーポラの比較分析を可能にするインタラクティブなシステムです。
TextEssenceには、軽量なWebベースのインターフェイスに、ビジュアル、隣り合わせ、および類似性ベースの組み込み分析モードが含まれています。
論文 参考訳(メタデータ) (2021-03-19T21:26:28Z) - Advancing Humor-Focused Sentiment Analysis through Improved
Contextualized Embeddings and Model Architecture [0.0]
噂によって、私たちは都合よく、効果的に思考や感情を表現することができます。
言語モデルが仮想アシスタントやIOTデバイスを介してユビキタス化するにつれ、ユーモアを意識したモデルを開発する必要性が指数関数的に高まっていく。
論文 参考訳(メタデータ) (2020-11-23T22:30:32Z) - A Common Semantic Space for Monolingual and Cross-Lingual
Meta-Embeddings [10.871587311621974]
本稿では,モノリンガルおよびクロスリンガルなメタ埋め込みを作成するための新しい手法を提案する。
既存のワードベクトルは線形変換と平均化を用いて共通の意味空間に投影される。
結果として得られる言語間メタ埋め込みは、優れた言語間移動学習能力を示す。
論文 参考訳(メタデータ) (2020-01-17T15:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。