Predicting cognitive load in immersive driving scenarios with a hybrid CNN-RNN model
- URL: http://arxiv.org/abs/2408.06350v1
- Date: Wed, 24 Jul 2024 04:08:59 GMT
- Title: Predicting cognitive load in immersive driving scenarios with a hybrid CNN-RNN model
- Authors: Mehshan Ahmed Khan, Houshyar Asadi, Mohammad Reza Chalak Qazani, Adetokunbo Arogbonlo, Saeid Nahavandi, Chee Peng Lim,
- Abstract summary: We propose a hybrid neural network combining a 1D Convolutional Neural Network and a Recurrent Neural Network to predict cognitive load.
Our experimental re-sults demonstrate that the proposed model, with fewer parameters, increases accuracy from 99.82% to 99.99% using physiological data.
- Score: 14.447227532284321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One debatable issue in traffic safety research is that cognitive load from sec-ondary tasks reduces primary task performance, such as driving. Although physiological signals have been extensively used in driving-related research to assess cognitive load, only a few studies have specifically focused on high cognitive load scenarios. Most existing studies tend to examine moderate or low levels of cognitive load In this study, we adopted an auditory version of the n-back task of three levels as a cognitively loading secondary task while driving in a driving simulator. During the simultaneous execution of driving and the n-back task, we recorded fNIRS, eye-tracking, and driving behavior data to predict cognitive load at three different levels. To the best of our knowledge, this combination of data sources has never been used before. Un-like most previous studies that utilize binary classification of cognitive load and driving in conditions without traffic, our study involved three levels of cognitive load, with drivers operating in normal traffic conditions under low visibility, specifically during nighttime and rainy weather. We proposed a hybrid neural network combining a 1D Convolutional Neural Network and a Recurrent Neural Network to predict cognitive load. Our experimental re-sults demonstrate that the proposed model, with fewer parameters, increases accuracy from 99.82% to 99.99% using physiological data, and from 87.26% to 92.02% using driving behavior data alone. This significant improvement highlights the effectiveness of our hybrid neural network in accurately pre-dicting cognitive load during driving under challenging conditions.
Related papers
- From Data-Fitting to Discovery: Interpreting the Neural Dynamics of
Motor Control through Reinforcement Learning [3.6159844753873087]
We study structured neural activity of a virtual robot performing legged locomotion.
We find that embodied agents trained to walk exhibit smooth dynamics that avoid tangling -- or opposing neural trajectories in neighboring neural space.
arXiv Detail & Related papers (2023-05-18T16:52:27Z) - Multimodal Brain-Computer Interface for In-Vehicle Driver Cognitive Load
Measurement: Dataset and Baselines [20.22894459715378]
We introduce a novel driver cognitive load assessment dataset, CL-Drive.
The data was collected from 21 subjects while driving in an immersive vehicle simulator.
Each driver reported their subjective cognitive load every 10 seconds throughout the experiment.
arXiv Detail & Related papers (2023-04-09T16:35:31Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience.
In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans.
We present a novel formulation of the prior function that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy.
arXiv Detail & Related papers (2022-11-16T20:00:38Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Modeling cognitive load as a self-supervised brain rate with
electroencephalography and deep learning [2.741266294612776]
This research presents a novel self-supervised method for mental workload modelling from EEG data.
The method is a convolutional recurrent neural network trainable with spatially preserving spectral topographic head-maps from EEG data to fit the brain rate variable.
Findings point to the existence of quasi-stable blocks of learnt high-level representations of cognitive activation because they can be induced through convolution and seem not to be dependent on each other over time, intuitively matching the non-stationary nature of brain responses.
arXiv Detail & Related papers (2022-09-21T07:44:21Z) - What's on your mind? A Mental and Perceptual Load Estimation Framework
towards Adaptive In-vehicle Interaction while Driving [55.41644538483948]
We analyze the effects of mental workload and perceptual load on psychophysiological dimensions.
We classify the mental and perceptual load levels through the fusion of these measurements.
We report up to 89% mental workload classification accuracy and provide a real-time minimally-intrusive solution.
arXiv Detail & Related papers (2022-08-10T21:19:49Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z) - EEG-based Drowsiness Estimation for Driving Safety using Deep Q-Learning [46.3327842128563]
We propose using deep Q-learning to analyze an electroencephalogram (EEG) dataset captured during a simulated endurance driving test.
We adapt the terminologies in the driving test to fit the reinforcement learning framework, thus formulate the drowsiness estimation problem as an optimization of a Q-learning task.
Our results show that the trained model can trace the variations of mind state in a satisfactory way against the testing EEG data.
arXiv Detail & Related papers (2020-01-08T07:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.