論文の概要: MetMamba: Regional Weather Forecasting with Spatial-Temporal Mamba Model
- arxiv url: http://arxiv.org/abs/2408.06400v1
- Date: Mon, 12 Aug 2024 11:09:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:38:59.953069
- Title: MetMamba: Regional Weather Forecasting with Spatial-Temporal Mamba Model
- Title(参考訳): MetMamba:時空間マンバモデルによる地域気象予報
- Authors: Haoyu Qin, Yungang Chen, Qianchuan Jiang, Pengchao Sun, Xiancai Ye, Chao Lin,
- Abstract要約: 本稿では,最新の状態空間モデルであるMambaをベースに構築された,ディープラーニングに基づく天気予報モデルMetMambaが,顕著な性能向上をもたらすことを示す。
また、グローバルホストモデルと組み合わせたトレーニングにより、ディープラーニングに基づく限定領域モデリングの実現可能性を示す。
- 参考スコア(独自算出の注目度): 4.896297413020192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning based Weather Prediction (DLWP) models have been improving rapidly over the last few years, surpassing state of the art numerical weather forecasts by significant margins. While much of the optimization effort is focused on training curriculum to extend forecast range in the global context, two aspects remains less explored: limited area modeling and better backbones for weather forecasting. We show in this paper that MetMamba, a DLWP model built on a state-of-the-art state-space model, Mamba, offers notable performance gains and unique advantages over other popular backbones using traditional attention mechanisms and neural operators. We also demonstrate the feasibility of deep learning based limited area modeling via coupled training with a global host model.
- Abstract(参考訳): ディープラーニングに基づく天気予報(DLWP)モデルは、ここ数年で急速に改善され、最先端の天気予報をかなりの差で上回っている。
最適化の取り組みの多くは、グローバルな文脈で予測範囲を拡張するためのトレーニングカリキュラムに焦点が当てられているが、領域モデリングの限定と天気予報のためのより良いバックボーンという2つの側面は検討されていない。
本稿では,最新の状態空間モデルであるMamba上に構築されたDLWPモデルであるMetMambaが,従来のアテンション機構とニューラル演算子を用いた他の一般的なバックボーンに対して,顕著なパフォーマンス向上とユニークなアドバンテージを提供することを示す。
また、グローバルホストモデルと組み合わせたトレーニングにより、ディープラーニングに基づく限定領域モデリングの実現可能性を示す。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Graph-based Neural Weather Prediction for Limited Area Modeling [12.576113481317527]
グラフベースのNeurWPアプローチを限定領域設定に適用し,マルチスケール階層モデル拡張を提案する。
本手法は北欧地域の局所モデルを用いた実験により検証された。
論文 参考訳(メタデータ) (2023-09-29T16:20:34Z) - Generative Modeling of High-resolution Global Precipitation Forecasts [2.1485350418225244]
GAN(Generative Adversarial Network)を用いた最先端の深層学習降水モデル(FourCastNet)のアーキテクチャとトレーニングプロセスの改善について述べる。
我々の改良は, 降水量の極端にパーセンタイルを捕捉する上で, 1~2日間のリードタイムでの予測能力において, 最先端のNWPモデルに匹敵する優れた性能を実現している。
論文 参考訳(メタデータ) (2022-10-22T17:21:16Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。