論文の概要: Heat as a witness of quantum properties
- arxiv url: http://arxiv.org/abs/2408.06418v2
- Date: Tue, 04 Feb 2025 16:40:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:54:32.089892
- Title: Heat as a witness of quantum properties
- Title(参考訳): 量子物性の証人としての熱
- Authors: A. de Oliveira Junior, Jonatan Bohr Brask, Patryk Lipka-Bartosik,
- Abstract要約: 熱発生に基づくエンタングルメントやコヒーレンスなどの量子資源を目撃するための新しいアプローチを提案する。
マクスウェルの悪魔に触発され、量子系と熱環境の間の最適な熱交換は、プロセスが量子メモリによって補助されるときに何であるかを尋ねる。
このシナリオで基本的なエネルギー制約を導出し、量子状態が熱交換によって古典的でないシグネチャを明らかにすることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a new approach for witnessing quantum resources, such as entanglement and coherence, based on heat generation. Inspired by Maxwell's demon, we ask what the optimal heat exchange between a quantum system and a thermal environment is when the process is assisted by a quantum memory. We derive fundamental energy constraints in this scenario and show that quantum states can reveal non-classical signatures via heat exchange. This approach leads to a heat-based witness for quantum properties, offering an alternative to system-specific measurements, as it only relies on fixed energy measurements in a thermal ancilla. We illustrate our findings with the detection of entanglement in isotropic states and coherence in two-spin systems interacting with a single-mode electromagnetic field.
- Abstract(参考訳): 熱発生に基づくエンタングルメントやコヒーレンスなどの量子資源を目撃するための新しいアプローチを提案する。
マクスウェルの悪魔に触発され、量子系と熱環境の間の最適な熱交換は、プロセスが量子メモリによって補助されるときに何であるかを尋ねる。
このシナリオで基本的なエネルギー制約を導出し、量子状態が熱交換によって古典的でないシグネチャを明らかにすることを示す。
このアプローチは熱に基づく量子特性の証人となり、熱アンシラの固定エネルギー測定にのみ依存するため、システム固有の測定の代替となる。
単モード電磁界と相互作用する2スピン系における等方性状態の絡み合いの検出とコヒーレンスについて述べる。
関連論文リスト
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
本稿では,69個の超伝導量子ビットからなる量子シミュレータについて述べる。
古典的Kosterlitz-Thouless相転移のシグネチャと,Kibble-Zurekスケール予測からの強い偏差を観測する。
本システムは, 対角二量体状態でディジタル的に調製し, 熱化時のエネルギーと渦の輸送を画像化する。
論文 参考訳(メタデータ) (2024-05-27T17:40:39Z) - A novel scheme for modelling dissipation or thermalization in open quantum systems [0.0]
オープン量子系における散逸(利得)と熱化の新たな手法を提案する。
本手法の効率性と意義を実証するために, ユビキタスなオープン量子システムに適用する。
論文 参考訳(メタデータ) (2024-04-16T05:20:30Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
エネルギー固有状態と熱密度行列の両方について量子フィッシャー情報(QFI)を計算する。
局所的なユニタリ変換の結果と比較した。
論文 参考訳(メタデータ) (2023-04-04T09:28:19Z) - Heat transport in an optical lattice via Markovian feedback control [0.0]
マルコフフィードバック制御を用いて、1次元Bose-Hubbard鎖の境界に結合する2つの有効な熱浴を合成する。
システムサイズによるスケーリングや障害に対する応答など,定常的な熱電流について検討する。
原子状量子ガス中の物質の熱電流の定常状態の量子シミュレーションのための経路を提供する。
論文 参考訳(メタデータ) (2022-07-27T16:35:24Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
本研究では, 量子系が熱浴と相互作用する際の可視性に関する量子一般化を実験的に提案する。
微視的可逆性の原理に対する量子修正が低温限界において重要であることを検証した。
論文 参考訳(メタデータ) (2022-05-26T00:25:29Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
我々は,IBMQプロセッサのストロボスコープ2ストロークサーマルエンジンの量子シミュレーションを行った。
この系は2つの浴槽に繋がった量子スピン鎖で構成され、変分量子熱分解器アルゴリズムを用いて異なる温度で調製される。
論文 参考訳(メタデータ) (2022-03-25T16:55:08Z) - Taking the temperature of a pure quantum state [55.41644538483948]
温度は一見単純な概念で、量子物理学研究の最前線ではまだ深い疑問が浮かび上がっています。
本稿では,量子干渉による純状態の温度測定手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
常温環境に埋め込まれた非エルミート量子系を記述する理論を提案する。
確率損失と熱ゆらぎの複合作用は分子接合の量子輸送を補助する。
論文 参考訳(メタデータ) (2021-01-21T14:33:34Z) - Quantum thermodynamically consistent local master equations [0.0]
局所マスター方程式は、顕微鏡モデルに頼らずに熱力学とその法則と整合性を示す。
複数の浴槽に接する量子系を考察し, 総エネルギー, 熱電流, エントロピー生成速度に対する関連する寄与を同定する。
論文 参考訳(メタデータ) (2020-08-11T14:53:36Z) - Quantifying the quantum heat contribution from a driven superconducting
circuit [0.0]
本研究では,コヒーレント駆動原子と熱環境が交換する熱流の量子成分を検出するための2つの貯留層構成を提案する。
熱流に対する量子的および古典的な寄与をオン/オフして、駆動パラメータをチューニングすることで、独立的な特徴付けを可能にします。
論文 参考訳(メタデータ) (2020-01-28T14:38:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。