論文の概要: Bayesian Learning in a Nonlinear Multiscale State-Space Model
- arxiv url: http://arxiv.org/abs/2408.06425v6
- Date: Tue, 3 Sep 2024 15:07:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 16:51:50.558741
- Title: Bayesian Learning in a Nonlinear Multiscale State-Space Model
- Title(参考訳): 非線形多スケール状態空間モデルにおけるベイズ学習
- Authors: Nayely Vélez-Cruz, Manfred D. Laubichler,
- Abstract要約: この研究は、異なる時間スケールで相互作用するシステム間の動的相互作用を探索する、新しいマルチスケール状態空間モデルを導入する。
本稿では,このマルチスケールモデルにおける未知のプロセスノイズ共分散を学習することにより,未知の状態の推定を行うためのベイズ学習フレームワークを提案する。
本研究では,提案手法の有効性をシミュレーションし,提案手法の有効性を実証するPGASアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ubiquity of multiscale interactions in complex systems is well-recognized, with development and heredity serving as a prime example of how processes at different temporal scales influence one another. This work introduces a novel multiscale state-space model to explore the dynamic interplay between systems interacting across different time scales, with feedback between each scale. We propose a Bayesian learning framework to estimate unknown states by learning the unknown process noise covariances within this multiscale model. We develop a Particle Gibbs with Ancestor Sampling (PGAS) algorithm for inference and demonstrate through simulations the efficacy of our approach.
- Abstract(参考訳): 複雑なシステムにおけるマルチスケール相互作用の普遍性はよく認識されており、発達と遺伝性は、異なる時間スケールのプロセスが相互にどのように影響するかを示す主要な例である。
この研究は、異なる時間スケールで相互作用するシステム間の動的相互作用を、各スケール間のフィードバックで探索する、新しいマルチスケール状態空間モデルを導入している。
本稿では,このマルチスケールモデルにおける未知のプロセスノイズ共分散を学習することにより,未知の状態の推定を行うためのベイズ学習フレームワークを提案する。
本研究では,提案手法の有効性をシミュレーションし,提案手法の有効性を実証するPGASアルゴリズムを開発した。
関連論文リスト
- A Generalized Framework for Multiscale State-Space Modeling with Nested Nonlinear Dynamics: An Application to Bayesian Learning under Switching Regimes [0.0]
ネストされた非線形力学を組み込んだマルチスケール状態空間モデリングのための一般化されたフレームワークを提案する。
私たちのフレームワークは、システム内の高速プロセスと低速プロセスの間の複雑な相互作用をキャプチャします。
我々は,スイッチングダイナミクスに対応する潜在状態と指標を推定するベイズ学習手法を開発した。
論文 参考訳(メタデータ) (2024-10-24T18:31:20Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
既存の手法は、弱い時間的モデリング能力に制限されている。
この問題に対処するために、Decoupled Scoupled Framework (DeST)を提案する。
DeSTは計算量が少なく、現在の最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-10T09:11:39Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Score-based Data Assimilation [7.215767098253208]
軌道推定のためのスコアベースのデータ同化を導入する。
我々は、任意の長さの軌道のスコアを、短いセグメントにまたがって一連のスコアに分解できるというキーインサイトに基づいて、状態軌道のスコアに基づく生成モデルを学ぶ。
論文 参考訳(メタデータ) (2023-06-18T14:22:03Z) - Newton-Cotes Graph Neural Networks: On the Time Evolution of Dynamic
Systems [49.50674348130157]
本稿では,ニュートン・コーツの公式を用いた速度推定に基づく積分の予測手法を提案する。
いくつかのベンチマークの実験は、最先端の手法と比較して、一貫性と顕著な改善を実証的に示している。
論文 参考訳(メタデータ) (2023-05-24T02:23:00Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - Meta-models for transfer learning in source localisation [3.8922067105369154]
この研究は、(メタモデルとして)AE実験間の相互依存性を捉えることを目的としている。
ハイレベルなメタモデルがタスク間関係をキャプチャするベイズ的マルチレベルアプローチを利用する。
主要な貢献は、実験的なキャンペーンの知識をタスクとタスクの間でエンコードする方法である。
論文 参考訳(メタデータ) (2023-05-15T14:02:35Z) - Learning to Decouple Complex Systems [16.544684282277526]
本研究では,不規則なサンプルや散逸した逐次観測を扱うための逐次学習手法を提案する。
我々は、単純体の中で進化するメタシステムは射影微分方程式(ProjDEs)によって支配されると主張する。
論文 参考訳(メタデータ) (2023-02-03T07:24:58Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Spatiotemporal Learning of Multivehicle Interaction Patterns in
Lane-Change Scenarios [11.893098067272463]
コモン・イット・チャレージング・インタラクションのシナリオの解釈は、自動運転車のしっかりとした決定に役立てることができる。
本稿では、連続(ガウス過程)および離散(ディリクレ過程)プロセスを活用するベイズ的非パラメトリックアプローチについて述べる。
提案手法は,車体ペデストリアン相互作用など,他の種類のマルチエージェント相互作用を効率的に解析することに重点を置いている。
論文 参考訳(メタデータ) (2020-03-02T10:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。