論文の概要: Spatiotemporal Learning of Multivehicle Interaction Patterns in
Lane-Change Scenarios
- arxiv url: http://arxiv.org/abs/2003.00759v2
- Date: Sat, 5 Sep 2020 09:48:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 05:51:05.231898
- Title: Spatiotemporal Learning of Multivehicle Interaction Patterns in
Lane-Change Scenarios
- Title(参考訳): レーン・チェンジシナリオにおける多車間相互作用パターンの時空間学習
- Authors: Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, Junqiang Xi
- Abstract要約: コモン・イット・チャレージング・インタラクションのシナリオの解釈は、自動運転車のしっかりとした決定に役立てることができる。
本稿では、連続(ガウス過程)および離散(ディリクレ過程)プロセスを活用するベイズ的非パラメトリックアプローチについて述べる。
提案手法は,車体ペデストリアン相互作用など,他の種類のマルチエージェント相互作用を効率的に解析することに重点を置いている。
- 参考スコア(独自算出の注目度): 11.893098067272463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretation of common-yet-challenging interaction scenarios can benefit
well-founded decisions for autonomous vehicles. Previous research achieved this
using their prior knowledge of specific scenarios with predefined models,
limiting their adaptive capabilities. This paper describes a Bayesian
nonparametric approach that leverages continuous (i.e., Gaussian processes) and
discrete (i.e., Dirichlet processes) stochastic processes to reveal underlying
interaction patterns of the ego vehicle with other nearby vehicles. Our model
relaxes dependency on the number of surrounding vehicles by developing an
acceleration-sensitive velocity field based on Gaussian processes. The
experiment results demonstrate that the velocity field can represent the
spatial interactions between the ego vehicle and its surroundings. Then, a
discrete Bayesian nonparametric model, integrating Dirichlet processes and
hidden Markov models, is developed to learn the interaction patterns over the
temporal space by segmenting and clustering the sequential interaction data
into interpretable granular patterns automatically. We then evaluate our
approach in the highway lane-change scenarios using the highD dataset collected
from real-world settings. Results demonstrate that our proposed Bayesian
nonparametric approach provides an insight into the complicated lane-change
interactions of the ego vehicle with multiple surrounding traffic participants
based on the interpretable interaction patterns and their transition properties
in temporal relationships. Our proposed approach sheds light on efficiently
analyzing other kinds of multi-agent interactions, such as vehicle-pedestrian
interactions. View the demos via https://youtu.be/z_vf9UHtdAM.
- Abstract(参考訳): 共通の相互作用シナリオの解釈は、自動運転車の確立された意思決定に有用である。
従来の研究は、事前定義されたモデルを持つ特定のシナリオに関する事前の知識を使ってこれを達成し、適応能力を制限した。
本稿では、連続(ガウス過程)と離散(ディリクレ過程)の確率過程を利用して、エゴ車両と他の車両との相互作用パターンを明らかにするベイズ非パラメトリックアプローチについて述べる。
本モデルでは,ガウス過程に基づく加速感度速度場を開発することにより,周辺車両数への依存を緩和する。
実験の結果,速度場はエゴ車とその周囲の空間的相互作用を表現できることがわかった。
次に、ディリクレ過程と隠れマルコフモデルを統合する離散ベイズ非パラメトリックモデルを開発し、逐次的相互作用データを解釈可能な粒度パターンに分割・クラスタリングすることで、時間空間上の相互作用パターンを学習する。
次に、実環境から収集した高Dデータセットを用いて、ハイウェイレーン変更シナリオにおけるアプローチを評価する。
その結果,提案するベイズ型非パラメトリックアプローチは,解釈可能な相互作用パターンと時間的関係における遷移特性に基づいて,複数のトラヒック参加者とのego車両の複雑な車線変更相互作用に関する洞察を与える。
提案手法は,車とペデストリアンの相互作用など,他の種類のマルチエージェント相互作用を効率的に解析することに光を当てる。
デモはhttps://youtu.be/z_vf9UHtdAMで見ることができる。
関連論文リスト
- FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
本研究では,自動車追従軌道予測のためのスケールドノイズ条件拡散モデルを提案する。
車両間の詳細な相互作用と自動車追従ダイナミクスを生成フレームワークに統合し、予測された軌跡の精度と妥当性を向上させる。
種々の実世界の運転シナリオに関する実験結果は,提案手法の最先端性能と堅牢性を示すものである。
論文 参考訳(メタデータ) (2024-11-23T23:13:45Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
深層学習(DL)と強化学習(RL)の階層的ハイブリッドフレームワークを提案する。
DLの段階では、トラフィックシーンは、トランスフォーマースタイルのGNNが異種相互作用を符号化するために採用される複数の中間スケールの異種グラフに分割される。
RLの段階では、DLの段階で予測される重要な将来点を利用して、交通シーンを局所的なサブシーンに分割する。
論文 参考訳(メタデータ) (2023-03-22T02:47:42Z) - Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction [29.701029725302586]
目標条件付きフレームワークを用いた共同軌道予測問題について検討する。
本研究では,条件付き変分自動エンコーダ(CVAE)モデルを導入し,異なる相互作用モードを潜在空間に明示的にエンコードする。
KLの消滅を回避する新しい手法を提案し、擬似ラベルを用いた解釈可能な対話型潜在空間を誘導する。
論文 参考訳(メタデータ) (2022-03-28T21:41:21Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
速度場データの不均一および動的パターンを学習するモデルを開発した。
複雑な多車間相互作用のNGSIMデータセットに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T17:45:46Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
物体選択と参照のための自動車応用において、手指しと目視が広く研究されている。
既存の車外参照手法は静的な状況に重点を置いているが、移動車両の状況は極めて動的であり、安全性に制約がある。
本研究では,外部オブジェクトを参照するタスクにおいて,各モダリティの具体的特徴とそれら間の相互作用について検討する。
論文 参考訳(メタデータ) (2020-09-23T14:56:19Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
都市混合交通圏における軌道予測は多くのインテリジェント交通システムにとって重要である。
本稿では,過去と未来の両方のシーンコンテキストを符号化して学習するマルチコンテキストネットワーク(MCENET)を提案する。
推定時間において,対象エージェントの過去の状況と動作情報と潜伏変数のサンプリングを組み合わせ,複数の現実的軌跡を予測する。
論文 参考訳(メタデータ) (2020-02-14T11:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。