論文の概要: S-SAM: SVD-based Fine-Tuning of Segment Anything Model for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2408.06447v1
- Date: Mon, 12 Aug 2024 18:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:27:43.761905
- Title: S-SAM: SVD-based Fine-Tuning of Segment Anything Model for Medical Image Segmentation
- Title(参考訳): S-SAM: SVDを用いた医用画像分割用セグメンテーションモデルの微調整
- Authors: Jay N. Paranjape, Shameema Sikder, S. Swaroop Vedula, Vishal M. Patel,
- Abstract要約: 我々はS-SAMと呼ばれる適応手法を提案し、SAMのパラメータの0.4%に相当するパラメータのみを訓練すると同時に、単にラベル名を正確なマスクを生成するためのプロンプトとして利用する。
内視鏡像,X線像,超音波像,CT像,組織像の5つの異なるモードで評価した。
- 参考スコア(独自算出の注目度): 25.12190845061075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation has been traditionally approached by training or fine-tuning the entire model to cater to any new modality or dataset. However, this approach often requires tuning a large number of parameters during training. With the introduction of the Segment Anything Model (SAM) for prompted segmentation of natural images, many efforts have been made towards adapting it efficiently for medical imaging, thus reducing the training time and resources. However, these methods still require expert annotations for every image in the form of point prompts or bounding box prompts during training and inference, making it tedious to employ them in practice. In this paper, we propose an adaptation technique, called S-SAM, that only trains parameters equal to 0.4% of SAM's parameters and at the same time uses simply the label names as prompts for producing precise masks. This not only makes tuning SAM more efficient than the existing adaptation methods but also removes the burden of providing expert prompts. We call this modified version S-SAM and evaluate it on five different modalities including endoscopic images, x-ray, ultrasound, CT, and histology images. Our experiments show that S-SAM outperforms state-of-the-art methods as well as existing SAM adaptation methods while tuning a significantly less number of parameters. We release the code for S-SAM at https://github.com/JayParanjape/SVDSAM.
- Abstract(参考訳): 医用画像のセグメンテーションは伝統的に、新しいモダリティやデータセットに対応するために、モデル全体のトレーニングや微調整によってアプローチされてきた。
しかし、このアプローチでは、トレーニング中に多数のパラメータをチューニングする必要があることが多い。
自然画像のセグメンテーションのためのSegment Anything Model(SAM)の導入により、医用画像に効果的に適応し、トレーニング時間とリソースを削減した。
しかしながら、これらのメソッドは、トレーニングや推論中にポイントプロンプトやバウンディングボックスプロンプトという形で、すべてのイメージに対して専門家のアノテーションを必要とするため、実際にそれらを採用するのは面倒である。
本稿では,SAMのパラメータの0.4%に相当するパラメータのみを訓練するS-SAMという適応手法を提案する。
これにより、SAMのチューニングが既存のアダプティブメソッドよりも効率的になるだけでなく、専門家によるプロンプトの提供の負担も軽減される。
内視鏡像,X線像,超音波像,CT像,組織像の5つの異なるモードで評価した。
実験の結果、S-SAMは既存のSAM適応法と同様に最先端の手法よりも優れており、パラメータの数も大幅に少ないことがわかった。
我々はS-SAMのコードをhttps://github.com/JayParanjape/SVDSAMでリリースします。
関連論文リスト
- Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
そこで本研究では,SAMの知識と外科的特異的情報を統合し,汎用性を向上させるための,新しいエンドツーエンドの効率的なチューニング手法であるScientialSAMを紹介した。
具体的には,タイピングのための軽量なプロトタイプベースクラスプロンプトエンコーダを提案し,クラスプロトタイプから直接プロンプト埋め込みを生成する。
また,手術器具カテゴリー間のクラス間差異の低さに対応するために,コントラッシブなプロトタイプ学習を提案する。
論文 参考訳(メタデータ) (2023-08-17T02:51:01Z) - AdaptiveSAM: Towards Efficient Tuning of SAM for Surgical Scene
Segmentation [49.59991322513561]
本稿では,新しいデータセットに迅速かつ効率的に適応できるSegment-Anything(SAM)の適応的な修正を提案する。
AdaptiveSAMは、フリーフォームテキストをプロンプトとして使用し、ラベル名のみをプロンプトとして、興味のあるオブジェクトをセグメント化することができる。
実験の結果,AdaptiveSAMは様々な医用画像データセットの最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-07T17:12:54Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM)は、自然画像のゼロショットセグメンテーションにおいて印象的な機能を示す。
しかし、医療画像に適用すると、SAMは顕著なパフォーマンス低下に悩まされる。
本研究では,SAMエンコーダを凍結し,軽量なタスク固有予測ヘッドを微調整することを提案する。
論文 参考訳(メタデータ) (2023-06-23T18:34:30Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
我々は,Segment Anything Model (SAM) のためのトレーニング不要なパーソナライズ手法を提案する。
PerSAMは、参照マスクを持つ1つのイメージしか持たないため、最初にターゲットのコンセプトを以前のロケーションでローカライズする。
PerSAMは、ターゲット誘導された注意、ターゲットセマンティックなプロンプト、そしてカスケードされたポストリファインメントという3つのテクニックを通じて、他の画像やビデオにセグメントする。
論文 参考訳(メタデータ) (2023-05-04T17:59:36Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。