論文の概要: InfLocNet: Enhanced Lung Infection Localization and Disease Detection from Chest X-Ray Images Using Lightweight Deep Learning
- arxiv url: http://arxiv.org/abs/2408.06459v1
- Date: Mon, 12 Aug 2024 19:19:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:27:43.748175
- Title: InfLocNet: Enhanced Lung Infection Localization and Disease Detection from Chest X-Ray Images Using Lightweight Deep Learning
- Title(参考訳): InfLocNet:軽度深層学習を用いた胸部X線画像からの肺感染症の局在と疾患検出
- Authors: Md. Asiful Islam Miah, Shourin Paul, Sunanda Das, M. M. A. Hashem,
- Abstract要約: 本稿では,より軽量な深層学習に基づくセグメンテーション分類ネットワークを提案する。
胸部X線画像を用いた肺感染症の検出と局在性の向上を目的としている。
IoUは93.59%, Dice similarity Coefficient (DSC)は97.61%であった。
- 参考スコア(独自算出の注目度): 0.5242869847419834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the integration of deep learning techniques into medical imaging has revolutionized the diagnosis and treatment of lung diseases, particularly in the context of COVID-19 and pneumonia. This paper presents a novel, lightweight deep learning based segmentation-classification network designed to enhance the detection and localization of lung infections using chest X-ray images. By leveraging the power of transfer learning with pre-trained VGG-16 weights, our model achieves robust performance even with limited training data. The architecture incorporates refined skip connections within the UNet++ framework, reducing semantic gaps and improving precision in segmentation tasks. Additionally, a classification module is integrated at the end of the encoder block, enabling simultaneous classification and segmentation. This dual functionality enhances the model's versatility, providing comprehensive diagnostic insights while optimizing computational efficiency. Experimental results demonstrate that our proposed lightweight network outperforms existing methods in terms of accuracy and computational requirements, making it a viable solution for real-time and resource constrained medical imaging applications. Furthermore, the streamlined design facilitates easier hyperparameter tuning and deployment on edge devices. This work underscores the potential of advanced deep learning architectures in improving clinical outcomes through precise and efficient medical image analysis. Our model achieved remarkable results with an Intersection over Union (IoU) of 93.59% and a Dice Similarity Coefficient (DSC) of 97.61% in lung area segmentation, and an IoU of 97.67% and a DSC of 87.61% for infection region localization. Additionally, it demonstrated high accuracy of 93.86% and sensitivity of 89.55% in detecting chest diseases, highlighting its efficacy and reliability.
- Abstract(参考訳): 近年、深層学習技術の医療画像への統合は、特に新型コロナウイルスと肺炎の文脈において、肺疾患の診断と治療に革命をもたらした。
本稿では,胸部X線画像を用いた肺感染症の検出と局所化の促進を目的とした,より軽量な深層学習に基づくセグメンテーション分類ネットワークを提案する。
事前学習したVGG-16重みによる伝達学習のパワーを活用することで、限られたトレーニングデータでも頑健な性能を実現することができる。
アーキテクチャには、UNet++フレームワーク内の洗練されたスキップ接続が含まれており、セグメンテーションタスクのセグメンテーションギャップを減らし、精度を向上させる。
さらに、エンコーダブロックの端で分類モジュールが統合され、同時分類とセグメンテーションが可能となる。
この二重機能はモデルの汎用性を高め、計算効率を最適化しながら包括的な診断洞察を提供する。
実験の結果,提案する軽量ネットワークは,既存の手法よりも精度と計算能力に優れており,リアルタイム・資源制約型医用イメージングアプリケーションにおいて実現可能であることが示された。
さらに、合理化された設計により、エッジデバイスでのハイパーパラメータチューニングやデプロイが容易になる。
この研究は、精密かつ効率的な医用画像解析を通じて臨床結果を改善するための先進的なディープラーニングアーキテクチャの可能性を明らかにする。
IoUは93.59%, Dice similarity Coefficient (DSC)は97.61%, IoUは97.67%, DSCは87.61%であった。
さらに、高い精度93.86%、感度89.55%の胸部疾患の検出を示し、その有効性と信頼性を強調した。
関連論文リスト
- Lung Disease Detection with Vision Transformers: A Comparative Study of Machine Learning Methods [0.0]
本研究では,機械学習における最先端アーキテクチャであるビジョントランスフォーマー(ViT)の胸部X線解析への応用について検討する。
胸部X線像と肺分画領域に焦点を当てた2つのViT法の比較検討を行った。
論文 参考訳(メタデータ) (2024-11-18T08:40:25Z) - AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
X線画像診断のための新しい検出モデルtextbfAttCDCNetを提案する。
提案されたモデルは、新型コロナウイルスのラジオグラフィーデータセットでそれぞれ94.94%、95.14%、94.53%の精度、精度、リコールを達成した。
論文 参考訳(メタデータ) (2024-10-20T16:08:20Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
この論文は網膜血管セグメンテーションの課題に焦点を当てている。
深層学習に基づく医用画像セグメンテーションアプローチの広範な文献レビューを提供する。
効率的でシンプルな多視点学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T06:31:08Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
この研究は、機械学習アルゴリズムに胸部X線入力のための一般的な前処理ステップを導入する。
VGG11エンコーダをベースとした改良Y-Netアーキテクチャを用いて,ラジオグラフィの幾何学的配向とセグメンテーションを同時に学習する。
対照画像の27.0%,34.9%に対し,95.8%,96.2%のアノテーションマスクが認められた。
論文 参考訳(メタデータ) (2020-05-08T02:16:17Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
本稿では,診断パイプラインにおける基礎的,しかし困難な課題である肺分節に対する新しい深層学習手法を提案する。
本手法では, 逆批判モデルとともに, 最先端の完全畳み込みニューラルネットワークを用いる。
これは、患者プロファイルの異なる未確認データセットのCXRイメージによく当てはまり、JSRTデータセットの最終的なDSCRは97.5%に達した。
論文 参考訳(メタデータ) (2020-03-23T14:45:48Z) - U-Det: A Modified U-Net architecture with bidirectional feature network
for lung nodule segmentation [0.0]
本稿では,資源効率のよいモデルアーキテクチャであるU-Detを提案する。
提案モデルは,1186個の肺結節からなるLUNA-16データセットを用いて,広範囲に訓練および評価を行った。
U-Detアーキテクチャは既存のU-Netモデルを82.82%のDice類似度係数(DSC)で上回り、人間の専門家に匹敵する結果が得られる。
論文 参考訳(メタデータ) (2020-03-20T14:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。