Out of the Loop: Structural Approximation of Optimisation Landscapes and non-Iterative Quantum Optimisation
- URL: http://arxiv.org/abs/2408.06493v2
- Date: Wed, 14 Aug 2024 13:04:57 GMT
- Title: Out of the Loop: Structural Approximation of Optimisation Landscapes and non-Iterative Quantum Optimisation
- Authors: Tom Krüger, Wolfgang Mauerer,
- Abstract summary: Quantum Approximate optimisation algorithm (qaoa) is a widely studied quantum-classical iterative for optimisation.
We introduce a new algorithmic variant based on non-iterative computation that is instance-independent, but problem-specific.
Our approach is based on proving a long-standing conjecture regarding quantum-independent structures in qaoa.
- Score: 3.9857517408503567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimisation Algorithm (qaoa) is a widely studied quantum-classical iterative heuristic for combinatorial optimisation. While qaoa targets problems in complexity class NP, the classical optimisation procedure required in every iteration is itself known to be NP-hard. Still, advantage over classical approaches is suspected for certain scenarios, but nature and origin of its computational power are not yet satisfactorily understood. By introducing means of efficiently and accurately approximating the qaoa optimisation landscape from solution space structures, we derive a new algorithmic variant: Instead of performing an iterative quantum-classical computation for each input instance, our non-iterative method is based on a quantum circuit that is instance-independent, but problem-specific. It matches or outperforms unit-depth qaoa for key combinatorial problems, despite reduced computational effort. Our approach is based on proving a long-standing conjecture regarding instance-independent structures in qaoa. By ensuring generality, we link existing empirical observations on qaoa parameter clustering to established approaches in theoretical computer science, and provide a sound foundation for understanding the link between structural properties of solution spaces and quantum optimisation.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
We introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm.
VQASC requires optimization of fewer parameters than the system size, N, traditionally required in classical problems.
We present numerical results from both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-09-08T17:54:42Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Quantum Optimisation for Continuous Multivariable Functions by a
Structured Search [0.0]
Quantum variational algorithms leverage quantum superposition and entanglement to optimise over exponentially large solution spaces.
We show that quantum variational algorithms can efficiently optimise continuous multivariable functions by exploiting general structural properties of a discretised continuous solution space.
arXiv Detail & Related papers (2022-10-12T14:16:06Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.