論文の概要: Music2Latent: Consistency Autoencoders for Latent Audio Compression
- arxiv url: http://arxiv.org/abs/2408.06500v1
- Date: Mon, 12 Aug 2024 21:25:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:17:34.779758
- Title: Music2Latent: Consistency Autoencoders for Latent Audio Compression
- Title(参考訳): Music2Latent: 遅延オーディオ圧縮のための一貫性オートエンコーダ
- Authors: Marco Pasini, Stefan Lattner, George Fazekas,
- Abstract要約: 一貫性モデルを活用することで制限を克服するオーディオオートエンコーダであるMusic2Latentを紹介する。
Music2Latentは、単一エンドツーエンドのトレーニングプロセスにおいて、サンプルを圧縮された連続潜伏空間にエンコードする。
Music2Latentは、音質と再現精度において、既存の連続オーディオオートエンコーダよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient audio representations in a compressed continuous latent space are critical for generative audio modeling and Music Information Retrieval (MIR) tasks. However, some existing audio autoencoders have limitations, such as multi-stage training procedures, slow iterative sampling, or low reconstruction quality. We introduce Music2Latent, an audio autoencoder that overcomes these limitations by leveraging consistency models. Music2Latent encodes samples into a compressed continuous latent space in a single end-to-end training process while enabling high-fidelity single-step reconstruction. Key innovations include conditioning the consistency model on upsampled encoder outputs at all levels through cross connections, using frequency-wise self-attention to capture long-range frequency dependencies, and employing frequency-wise learned scaling to handle varying value distributions across frequencies at different noise levels. We demonstrate that Music2Latent outperforms existing continuous audio autoencoders in sound quality and reconstruction accuracy while achieving competitive performance on downstream MIR tasks using its latent representations. To our knowledge, this represents the first successful attempt at training an end-to-end consistency autoencoder model.
- Abstract(参考訳): 圧縮された連続潜時空間における効率的な音声表現は、生成的オーディオモデリングと音楽情報検索(MIR)タスクにおいて重要である。
しかし、既存のオーディオオートエンコーダには、マルチステージトレーニング手順、遅い反復サンプリング、低い再構成品質といった制限がある。
一貫性モデルを活用することでこれらの制限を克服するオーディオオートエンコーダであるMusic2Latentを紹介する。
Music2Latentは、単一エンドツーエンドのトレーニングプロセスにおいて、サンプルを圧縮された連続潜伏空間にエンコードし、高忠実な単一ステップ再構築を可能にする。
主なイノベーションは、アップサンプリングエンコーダ出力の整合性モデルをクロスコネクションを通じてすべてのレベルに条件付けすること、長距離周波数依存性を捉えるために周波数ワイド自己アテンションを使用すること、周波数ワイドのスケーリングを使用して異なるノイズレベルにおける周波数間の様々な値分布を処理することである。
Music2Latentは、その潜在表現を用いて、下流MIRタスクにおける競合性能を達成しつつ、音質と再現精度で既存の連続オーディオオートエンコーダより優れていることを示す。
我々の知る限り、これはエンドツーエンドの一貫性自動エンコーダモデルをトレーニングする最初の試みである。
関連論文リスト
- HPC: Hierarchical Progressive Coding Framework for Volumetric Video [39.403294185116]
ニューラルレージアンスフィールド(NeRF)に基づくボリュームビデオは、様々な3Dアプリケーションに対して大きな可能性を秘めている。
現在のNeRF圧縮は、ビデオ品質を調整できる柔軟性に欠けており、様々なネットワークやデバイス能力のための単一のモデル内である。
単一モデルを用いて可変性を実現する新しい階層型プログレッシブビデオ符号化フレームワークであるHPCを提案する。
論文 参考訳(メタデータ) (2024-07-12T06:34:24Z) - Autoregressive Diffusion Transformer for Text-to-Speech Synthesis [39.32761051774537]
連続空間$mathbb Rd$のベクトル列として音響を符号化し、これらの列を自己回帰的に生成する。
高ビットレート連続音声表現は、ほとんど欠陥のない再構成を可能にし、我々のモデルは、ほぼ完璧な音声編集を実現できる。
論文 参考訳(メタデータ) (2024-06-08T18:57:13Z) - Frieren: Efficient Video-to-Audio Generation Network with Rectified Flow Matching [51.70360630470263]
Video-to-audio (V2A) は、サイレントビデオからコンテンツマッチング音声を合成することを目的としている。
本稿では,修正フローマッチングに基づくV2AモデルであるFrierenを提案する。
実験により、フリーレンは世代品質と時間的アライメントの両方で最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-06-01T06:40:22Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - HybridFlow: Infusing Continuity into Masked Codebook for Extreme Low-Bitrate Image Compression [51.04820313355164]
HyrbidFlowは、連続的な機能ベースのストリームとコードブックベースのストリームを組み合わせることで、極めて低い条件下で高い知覚品質と高い忠実性を実現する。
実験の結果、超低速で複数のデータセットにまたがる優れた性能が示された。
論文 参考訳(メタデータ) (2024-04-20T13:19:08Z) - High Fidelity Neural Audio Compression [92.4812002532009]
我々は、ニューラルネットワークを利用した最先端のリアルタイム、高忠実、オーディオを導入する。
ストリーミングエンコーダ-デコーダアーキテクチャと、エンドツーエンドでトレーニングされた量子化潜在空間で構成されている。
単一マルチスケール・スペクトログラム・アドバイザリーを用いて、トレーニングを簡素化し、高速化する。
論文 参考訳(メタデータ) (2022-10-24T17:52:02Z) - RAVE: A variational autoencoder for fast and high-quality neural audio
synthesis [2.28438857884398]
本稿では,高速かつ高品質な音声波形合成が可能なリアルタイムオーディオ変分自動エンコーダ(RAVE)を提案する。
我々のモデルは48kHzのオーディオ信号を生成できる最初のモデルであり、同時に標準のラップトップCPU上で20倍高速に動作可能であることを示す。
論文 参考訳(メタデータ) (2021-11-09T09:07:30Z) - Audio Spectral Enhancement: Leveraging Autoencoders for Low Latency
Reconstruction of Long, Lossy Audio Sequences [0.0]
本稿では,低品質MP3音声波の長いシーケンスから高周波数を再構成するための新しい手法を提案する。
本アーキテクチャは,スキップ接続による音声波のスペクトル構造を保ちながら,いくつかのボトルネックを生じさせる。
差分量子化手法を用いて初期モデルのサイズを半減し、同時に推論時間を短縮する方法を示す。
論文 参考訳(メタデータ) (2021-08-08T18:06:21Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
本稿では,音声,音楽,一般音声を効率よく圧縮できる新しいニューラルオーディオシステムSoundStreamを紹介する。
SoundStreamは完全な畳み込みエンコーダ/デコーダネットワークと残留ベクトル量子化器に頼っている。
エンコーダまたはデコーダ側で、追加のレイテンシなしで、共同圧縮と拡張を行うことができます。
論文 参考訳(メタデータ) (2021-07-07T15:45:42Z) - Hierarchical Timbre-Painting and Articulation Generation [92.59388372914265]
本稿では,f0と大音量に基づく高速かつ高忠実な楽曲生成手法を提案する。
合成音声は、対象楽器の音色及び調音を模倣する。
論文 参考訳(メタデータ) (2020-08-30T05:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。