A Comparison of Imitation Learning Algorithms for Bimanual Manipulation
- URL: http://arxiv.org/abs/2408.06536v2
- Date: Sat, 24 Aug 2024 19:01:16 GMT
- Title: A Comparison of Imitation Learning Algorithms for Bimanual Manipulation
- Authors: Michael Drolet, Simon Stepputtis, Siva Kailas, Ajinkya Jain, Jan Peters, Stefan Schaal, Heni Ben Amor,
- Abstract summary: In this work, we demonstrate the limitations and benefits of prominent imitation learning approaches.
We evaluate each algorithm on a complex bimanual manipulation task involving an over-constrained dynamics system.
We find that imitation learning is well suited to solve such complex tasks, but not all algorithms are equal in terms of handling perturbations, training requirements, performance, and ease of use.
- Score: 22.531439806919547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amidst the wide popularity of imitation learning algorithms in robotics, their properties regarding hyperparameter sensitivity, ease of training, data efficiency, and performance have not been well-studied in high-precision industry-inspired environments. In this work, we demonstrate the limitations and benefits of prominent imitation learning approaches and analyze their capabilities regarding these properties. We evaluate each algorithm on a complex bimanual manipulation task involving an over-constrained dynamics system in a setting involving multiple contacts between the manipulated object and the environment. While we find that imitation learning is well suited to solve such complex tasks, not all algorithms are equal in terms of handling environmental and hyperparameter perturbations, training requirements, performance, and ease of use. We investigate the empirical influence of these key characteristics by employing a carefully designed experimental procedure and learning environment. Paper website: https://bimanual-imitation.github.io/
Related papers
- Enhancing PAC Learning of Half spaces Through Robust Optimization Techniques [0.0]
PAC learning half spaces under constant malicious noise, where a fraction of the training data is adversarially corrupted.
My study presents a novel, efficient algorithm that extends the existing theoretical frameworks to account for noise resilience in half space learning.
We provide a comprehensive analysis of the algorithm's performance, demonstrating its superior robustness to malicious noise when compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-10-21T23:08:17Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
We present a reinforcement learning algorithm for learning sparse non-parametric controllers in a Reproducing Kernel Hilbert Space.
We improve the sample complexity of this approach by imposing a structure of the state-action function through a normalized advantage function.
We demonstrate the performance of this algorithm on learning obstacle-avoidance policies in multiple simulations of a robot equipped with a laser scanner while navigating in a 2D environment.
arXiv Detail & Related papers (2021-03-26T13:58:23Z) - DERAIL: Diagnostic Environments for Reward And Imitation Learning [9.099589602551573]
We develop a suite of diagnostic tasks that test individual facets of algorithm performance in isolation.
Results confirm that algorithm performance is highly sensitive to implementation details.
Case-study shows how the suite can pinpoint design flaws and rapidly evaluate candidate solutions.
arXiv Detail & Related papers (2020-12-02T18:07:09Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.