論文の概要: Social Debiasing for Fair Multi-modal LLMs
- arxiv url: http://arxiv.org/abs/2408.06569v1
- Date: Tue, 13 Aug 2024 02:08:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:56:02.663877
- Title: Social Debiasing for Fair Multi-modal LLMs
- Title(参考訳): 公平なマルチモーダルLDMのための社会的デバイアス
- Authors: Harry Cheng, Yangyang Guo, Qingpei Guo, Ming Yang, Tian Gan, Liqiang Nie,
- Abstract要約: MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的バイアスの問題に対処する。i)多元的社会的概念(CMSC)を用いた包括的対実的データセットの導入,i)アンチステレオタイプデバイアス戦略(ASD)を提案する。
- 参考スコア(独自算出の注目度): 55.8071045346024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal Large Language Models (MLLMs) have advanced significantly, offering powerful vision-language understanding capabilities. However, these models often inherit severe social biases from their training datasets, leading to unfair predictions based on attributes like race and gender. This paper addresses the issue of social biases in MLLMs by i) Introducing a comprehensive Counterfactual dataset with Multiple Social Concepts (CMSC), which provides a more diverse and extensive training set compared to existing datasets. ii) Proposing an Anti-Stereotype Debiasing strategy (ASD). Our method works by revisiting the MLLM training process, rescaling the autoregressive loss function, and improving data sampling methods to counteract biases. Through extensive experiments on various MLLMs, our CMSC dataset and ASD method demonstrate a significant reduction in social biases while maintaining the models' original performance.
- Abstract(参考訳): MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的偏見の問題に対処する。
一 複数社会概念(CMSC)による包括的対実データセットの導入で、既存のデータセットと比較してより多様で広範なトレーニングセットを提供する。
二 抗ステレオタイプ脱バイアス戦略(ASD)の策定。
本手法は,MLLMトレーニングプロセスを再検討し,自己回帰損失関数を再スケーリングし,バイアス対策のためのデータサンプリング方法を改善する。
様々なMLLMに関する広範な実験を通じて、CMSCデータセットとASD法は、モデルの本来の性能を維持しながら、社会的バイアスを著しく低減することを示した。
関連論文リスト
- Fair In-Context Learning via Latent Concept Variables [17.216196320585922]
大規模言語モデル(LLM)は、学習前のデータから社会的偏見と差別を継承することができる。
我々は、予測結果と敏感な変数との相関を低減し、潜在概念学習における公平性の促進を支援するデータ強化戦略を設計する。
論文 参考訳(メタデータ) (2024-11-04T23:10:05Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
自己指導型学習手法の安定性のメカニズムを説明するための枠組みを提供する。
我々は,BYOL,SWAV,SimSiam,Barlow Twins,DINOなどの非コントラスト技術であるSimCLRの動作メカニズムについて議論する。
私たちは異なる仮説を定式化し、Imagenet100データセットを使ってそれらをテストします。
論文 参考訳(メタデータ) (2024-02-22T20:36:24Z) - Large Language Model (LLM) Bias Index -- LLMBI [0.0]
LLMBI(Large Language Model Bias Index)は、大規模言語モデル(LLM)に固有のバイアスを定量化し、対処するための先駆的なアプローチである。
年齢,性別,人種的偏見に限らず,多次元の偏見を取り入れた複合スコアリングシステムを用いたLLMBIの定式化を行った。
OpenAIのAPIからの応答を用いた実証分析では,バイアス検出の代表的な方法として,高度な感情分析を採用している。
論文 参考訳(メタデータ) (2023-12-22T15:38:13Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。