論文の概要: Large Language Model (LLM) Bias Index -- LLMBI
- arxiv url: http://arxiv.org/abs/2312.14769v3
- Date: Fri, 29 Dec 2023 11:07:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-02 20:23:39.518957
- Title: Large Language Model (LLM) Bias Index -- LLMBI
- Title(参考訳): Large Language Model (LLM) Bias Index -- LLMBI
- Authors: Abiodun Finbarrs Oketunji, Muhammad Anas, Deepthi Saina
- Abstract要約: LLMBI(Large Language Model Bias Index)は、大規模言語モデル(LLM)に固有のバイアスを定量化し、対処するための先駆的なアプローチである。
年齢,性別,人種的偏見に限らず,多次元の偏見を取り入れた複合スコアリングシステムを用いたLLMBIの定式化を行った。
OpenAIのAPIからの応答を用いた実証分析では,バイアス検出の代表的な方法として,高度な感情分析を採用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Large Language Model Bias Index (LLMBI) is a pioneering approach designed
to quantify and address biases inherent in large language models (LLMs), such
as GPT-4. We recognise the increasing prevalence and impact of LLMs across
diverse sectors. This research introduces a novel metric, LLMBI, to
systematically measure and mitigate biases potentially skewing model responses.
We formulated LLMBI using a composite scoring system incorporating multiple
dimensions of bias, including but not limited to age, gender, and racial
biases. To operationalise this metric, we engaged in a multi-step process
involving collecting and annotating LLM responses, applying sophisticated
Natural Language Processing (NLP) techniques for bias detection, and computing
the LLMBI score through a specially crafted mathematical formula. The formula
integrates weighted averages of various bias dimensions, a penalty for dataset
diversity deficiencies, and a correction for sentiment biases. Our empirical
analysis, conducted using responses from OpenAI's API, employs advanced
sentiment analysis as a representative method for bias detection. The research
reveals LLMs, whilst demonstrating impressive capabilities in text generation,
exhibit varying degrees of bias across different dimensions. LLMBI provides a
quantifiable measure to compare biases across models and over time, offering a
vital tool for systems engineers, researchers and regulators in enhancing the
fairness and reliability of LLMs. It highlights the potential of LLMs in
mimicking unbiased human-like responses. Additionally, it underscores the
necessity of continuously monitoring and recalibrating such models to align
with evolving societal norms and ethical standards.
- Abstract(参考訳): LLMBI(Large Language Model Bias Index)は、GPT-4のような大規模言語モデル(LLM)に固有のバイアスを定量化し、対処するための先駆的なアプローチである。
多様な分野におけるLSMの普及と影響を認識している。
本研究は,モデル応答を誘発する可能性のあるバイアスを系統的に測定し緩和する新しい計量 LLMBI を導入する。
年齢,性別,人種的偏見に限らず,多次元の偏見を取り入れた複合スコアリングシステムを用いたLSMBIの定式化を行った。
このメトリクスを運用するには, LLM応答の収集と注釈付け, バイアス検出のための洗練された自然言語処理(NLP)技術の適用, 特殊な数学的公式による LLMBI スコアの計算を含む多段階的なプロセスに携わる。
この公式は、様々なバイアス次元の重み付け平均値、データセットの多様性の欠陥に対するペナルティ、感情バイアスに対する補正を統合する。
OpenAIのAPIからの応答を用いた実証分析では,バイアス検出の代表的な方法として,高度な感情分析を採用している。
この研究は、LLMがテキスト生成において印象的な能力を示す一方で、異なる次元にまたがる様々なバイアスを示すことを明らかにしている。
LLMBIは、モデルと時間とともにバイアスを比較するための定量尺度を提供し、LLMの公平性と信頼性を高める上で、システムエンジニア、研究者、規制当局にとって重要なツールを提供する。
偏見のない人間のような反応を模倣するLLMの可能性を強調している。
さらに、社会規範や倫理基準の進化に合わせて、そのようなモデルを継続的に監視し、再検討する必要性を強調している。
関連論文リスト
- Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
大規模言語モデル(LLM)は幅広いタスクで採用されている。
最近の研究では、LLMは明示的な偏見評価をパスしても暗黙の偏見を抑えることができることが示されている。
この研究は、新しい言語モデルやより大きな言語モデルが自動的にバイアスを減らさないことを強調している。
論文 参考訳(メタデータ) (2024-10-13T03:43:18Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Causal-Guided Active Learning for Debiasing Large Language Models [40.853803921563596]
現在の生成型大規模言語モデル(LLM)は、それでもデータセットバイアスを捕捉し、生成に利用することができる。
従来の知識に基づくデバイアス法や微調整に基づくデバイアス法は、現在のLCMには適さない可能性がある。
LLM自体を利用して情報バイアスされたサンプルを自動かつ自律的に識別し,バイアスパターンを誘導する,カジュアル誘導型アクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T09:46:15Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的バイアスの問題に対処する。i)多元的社会的概念(CMSC)を用いた包括的対実的データセットの導入,i)アンチステレオタイプデバイアス戦略(ASD)を提案する。
論文 参考訳(メタデータ) (2024-08-13T02:08:32Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - Interpreting Bias in Large Language Models: A Feature-Based Approach [0.0]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクで顕著なパフォーマンスを示した。
本稿では, 特徴量に基づく新しい解析手法により, LLM内のバイアスの伝播について検討する。
論文 参考訳(メタデータ) (2024-06-18T07:28:15Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。