DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion
- URL: http://arxiv.org/abs/2408.06740v3
- Date: Fri, 15 Nov 2024 08:36:51 GMT
- Title: DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion
- Authors: Yujia Wu, Yiming Shi, Jiwei Wei, Chengwei Sun, Yang Yang, Heng Tao Shen,
- Abstract summary: We propose DiffLoRA, an efficient method that leverages the diffusion model as a hypernetwork to predict personalized Low-Rank Adaptation weights.
By incorporating these LoRA weights into the off-the-shelf text-to-image model, DiffLoRA enables zero-shot personalization during inference.
We introduce a novel identity-oriented LoRA weights construction pipeline to facilitate the training process of DiffLoRA.
- Score: 43.55179971287028
- License:
- Abstract: Personalized text-to-image generation has gained significant attention for its capability to generate high-fidelity portraits of specific identities conditioned on user-defined prompts. Existing methods typically involve test-time fine-tuning or incorporating an additional pre-trained branch. However, these approaches struggle to simultaneously address efficiency, identity fidelity, and the preservation of the model's original generative capabilities. In this paper, we propose DiffLoRA, an efficient method that leverages the diffusion model as a hypernetwork to predict personalized Low-Rank Adaptation (LoRA) weights based on the reference images. By incorporating these LoRA weights into the off-the-shelf text-to-image model, DiffLoRA enables zero-shot personalization during inference, eliminating the need for post-processing optimization. Moreover, we introduce a novel identity-oriented LoRA weights construction pipeline to facilitate the training process of DiffLoRA. The dataset generated through this pipeline enables DiffLoRA to produce consistently high-quality LoRA weights. Notably, the distinctive properties of the diffusion model enhance the generation of superior weights by employing probabilistic modeling to capture intricate structural patterns and thoroughly explore the weight space. Comprehensive experimental results demonstrate that DiffLoRA outperforms existing personalization approaches across multiple benchmarks, achieving both time efficiency and maintaining identity fidelity throughout the personalization process.
Related papers
- LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties.
We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure.
We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.
arXiv Detail & Related papers (2024-10-28T17:14:01Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models.
We propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix.
Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency.
arXiv Detail & Related papers (2024-10-12T08:22:44Z) - Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces for Large Finetuned Models [38.197552424549514]
Low-rank adaptations (LoRAs) have revolutionized the finetuning of large foundation models.
LoRAs present opportunities for applying machine learning techniques that take these low-rank weights themselves as inputs.
In this paper, we investigate the potential of Learning on LoRAs (LoL), a paradigm where LoRA weights serve as input to machine learning models.
arXiv Detail & Related papers (2024-10-05T15:52:47Z) - AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models [0.9514837871243403]
Low-rank adaptation (LoRA) is a fine-tuning technique that can be applied to conditional generative diffusion models.
We introduce AutoLoRA, a novel guidance technique for diffusion models fine-tuned with the LoRA approach.
arXiv Detail & Related papers (2024-10-04T21:57:11Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)
TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.
Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach [10.980433187379868]
Low-Rank Adaptation (LoRA) has been developed to reduce resource consumption while maintaining satisfactory fine-tuning results.
This paper investigates the intrinsic dimension of the matrix updates approximated by the LoRA method and reveals the performance benefits of increasing this intrinsic dimension.
arXiv Detail & Related papers (2024-07-16T15:26:31Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
We introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient?
First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch.
Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model.
Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time.
arXiv Detail & Related papers (2024-01-11T18:59:14Z) - DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral
Diffusion Model [18.25548360119976]
This paper endeavors to advance the precision of snapshot compressive imaging (SCI) reconstruction for multispectral image (MSI)
We propose a novel structured zero-shot diffusion model, dubbed DiffSCI.
We present extensive testing to show that DiffSCI exhibits discernible performance enhancements over prevailing self-supervised and zero-shot approaches.
arXiv Detail & Related papers (2023-11-19T20:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.