LoRA Diffusion: Zero-Shot LoRA Synthesis for Diffusion Model Personalization
- URL: http://arxiv.org/abs/2412.02352v1
- Date: Tue, 03 Dec 2024 10:17:15 GMT
- Title: LoRA Diffusion: Zero-Shot LoRA Synthesis for Diffusion Model Personalization
- Authors: Ethan Smith, Rami Seid, Alberto Hojel, Paramita Mishra, Jianbo Wu,
- Abstract summary: Low-Rank Adaptation (LoRA) and other parameter-efficient fine-tuning (PEFT) methods provide low-memory, storage-efficient solutions for personalizing text-to-image models.
We show that training a hypernetwork model to generate LoRA weights can achieve competitive quality for specific domains.
- Score: 0.0
- License:
- Abstract: Low-Rank Adaptation (LoRA) and other parameter-efficient fine-tuning (PEFT) methods provide low-memory, storage-efficient solutions for personalizing text-to-image models. However, these methods offer little to no improvement in wall-clock training time or the number of steps needed for convergence compared to full model fine-tuning. While PEFT methods assume that shifts in generated distributions (from base to fine-tuned models) can be effectively modeled through weight changes in a low-rank subspace, they fail to leverage knowledge of common use cases, which typically focus on capturing specific styles or identities. Observing that desired outputs often comprise only a small subset of the possible domain covered by LoRA training, we propose reducing the search space by incorporating a prior over regions of interest. We demonstrate that training a hypernetwork model to generate LoRA weights can achieve competitive quality for specific domains while enabling near-instantaneous conditioning on user input, in contrast to traditional training methods that require thousands of steps.
Related papers
- LoRA-X: Bridging Foundation Models with Training-Free Cross-Model Adaptation [48.22550575107633]
A new adapter, Cross-Model Low-Rank Adaptation (LoRA-X), enables the training-free transfer of LoRA parameters across source and target models.
Our experiments demonstrate the effectiveness of LoRA-X for text-to-image generation.
arXiv Detail & Related papers (2025-01-27T23:02:24Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.
Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.
We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces for Large Finetuned Models [38.197552424549514]
Low-rank adaptations (LoRAs) have revolutionized the finetuning of large foundation models.
LoRAs present opportunities for applying machine learning techniques that take these low-rank weights themselves as inputs.
In this paper, we investigate the potential of Learning on LoRAs (LoL), a paradigm where LoRA weights serve as input to machine learning models.
arXiv Detail & Related papers (2024-10-05T15:52:47Z) - AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models [0.9514837871243403]
Low-rank adaptation (LoRA) is a fine-tuning technique that can be applied to conditional generative diffusion models.
We introduce AutoLoRA, a novel guidance technique for diffusion models fine-tuned with the LoRA approach.
arXiv Detail & Related papers (2024-10-04T21:57:11Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion [43.55179971287028]
We propose DiffLoRA, an efficient method that leverages the diffusion model as a hypernetwork to predict personalized Low-Rank Adaptation weights.
By incorporating these LoRA weights into the off-the-shelf text-to-image model, DiffLoRA enables zero-shot personalization during inference.
We introduce a novel identity-oriented LoRA weights construction pipeline to facilitate the training process of DiffLoRA.
arXiv Detail & Related papers (2024-08-13T09:00:35Z) - LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models [7.926974917872204]
LoRA-SP is a novel approach utilizing randomized half-selective parameter freezing.
LoRA-SP significantly reduces computational and memory requirements without compromising model performance.
arXiv Detail & Related papers (2024-02-28T06:50:10Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.