AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models
- URL: http://arxiv.org/abs/2410.03941v1
- Date: Fri, 4 Oct 2024 21:57:11 GMT
- Title: AutoLoRA: AutoGuidance Meets Low-Rank Adaptation for Diffusion Models
- Authors: Artur Kasymov, Marcin Sendera, Michał Stypułkowski, Maciej Zięba, Przemysław Spurek,
- Abstract summary: Low-rank adaptation (LoRA) is a fine-tuning technique that can be applied to conditional generative diffusion models.
We introduce AutoLoRA, a novel guidance technique for diffusion models fine-tuned with the LoRA approach.
- Score: 0.9514837871243403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-rank adaptation (LoRA) is a fine-tuning technique that can be applied to conditional generative diffusion models. LoRA utilizes a small number of context examples to adapt the model to a specific domain, character, style, or concept. However, due to the limited data utilized during training, the fine-tuned model performance is often characterized by strong context bias and a low degree of variability in the generated images. To solve this issue, we introduce AutoLoRA, a novel guidance technique for diffusion models fine-tuned with the LoRA approach. Inspired by other guidance techniques, AutoLoRA searches for a trade-off between consistency in the domain represented by LoRA weights and sample diversity from the base conditional diffusion model. Moreover, we show that incorporating classifier-free guidance for both LoRA fine-tuned and base models leads to generating samples with higher diversity and better quality. The experimental results for several fine-tuned LoRA domains show superiority over existing guidance techniques on selected metrics.
Related papers
- LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties.
We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure.
We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.
arXiv Detail & Related papers (2024-10-28T17:14:01Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces for Large Finetuned Models [38.197552424549514]
Low-rank adaptations (LoRAs) have revolutionized the finetuning of large foundation models.
LoRAs present opportunities for applying machine learning techniques that take these low-rank weights themselves as inputs.
In this paper, we investigate the potential of Learning on LoRAs (LoL), a paradigm where LoRA weights serve as input to machine learning models.
arXiv Detail & Related papers (2024-10-05T15:52:47Z) - DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion [43.55179971287028]
We propose DiffLoRA, an efficient method that leverages the diffusion model as a hypernetwork to predict personalized Low-Rank Adaptation weights.
By incorporating these LoRA weights into the off-the-shelf text-to-image model, DiffLoRA enables zero-shot personalization during inference.
We introduce a novel identity-oriented LoRA weights construction pipeline to facilitate the training process of DiffLoRA.
arXiv Detail & Related papers (2024-08-13T09:00:35Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Low-Rank Adaptation of Time Series Foundational Models for Out-of-Domain Modality Forecasting [5.354055742467354]
Low-Rank Adaptation (LoRA) is a technique for fine-tuning large pre-trained or foundational models across different modalities and tasks.
This paper examines the impact of LoRA on contemporary time series foundational models: Lag-Llama, MOIRAI, and Chronos.
arXiv Detail & Related papers (2024-05-16T16:05:33Z) - Mixture of LoRA Experts [87.50120181861362]
This paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection.
The MoLE approach achieves superior LoRA fusion performance in comparison to direct arithmetic merging.
arXiv Detail & Related papers (2024-04-21T11:59:53Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z) - The Expressive Power of Low-Rank Adaptation [11.371811534310078]
Low-Rank Adaptation, a parameter-efficient fine-tuning method, has emerged as a prevalent technique for fine-tuning pre-trained models.
This paper takes the first step to bridge the gap by theoretically analyzing the expressive power of LoRA.
For Transformer networks, we show any model can be adapted to a target model of the same size with rank-$(fractextembedding size2)$ LoRA.
arXiv Detail & Related papers (2023-10-26T16:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.