Integrating Saliency Ranking and Reinforcement Learning for Enhanced Object Detection
- URL: http://arxiv.org/abs/2408.06803v1
- Date: Tue, 13 Aug 2024 10:46:42 GMT
- Title: Integrating Saliency Ranking and Reinforcement Learning for Enhanced Object Detection
- Authors: Matthias Bartolo, Dylan Seychell, Josef Bajada,
- Abstract summary: This study explores a series of experiments that combine reinforcement learning (RL)-based visual attention methods with saliency ranking techniques.
The best mean Average Precision (mAP) achieved in this study was 51.4, surpassing benchmarks set by RL-based single object detectors in the literature.
- Score: 0.08192907805418582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the ever-growing variety of object detection approaches, this study explores a series of experiments that combine reinforcement learning (RL)-based visual attention methods with saliency ranking techniques to investigate transparent and sustainable solutions. By integrating saliency ranking for initial bounding box prediction and subsequently applying RL techniques to refine these predictions through a finite set of actions over multiple time steps, this study aims to enhance RL object detection accuracy. Presented as a series of experiments, this research investigates the use of various image feature extraction methods and explores diverse Deep Q-Network (DQN) architectural variations for deep reinforcement learning-based localisation agent training. Additionally, we focus on optimising the detection pipeline at every step by prioritising lightweight and faster models, while also incorporating the capability to classify detected objects, a feature absent in previous RL approaches. We show that by evaluating the performance of these trained agents using the Pascal VOC 2007 dataset, faster and more optimised models were developed. Notably, the best mean Average Precision (mAP) achieved in this study was 51.4, surpassing benchmarks set by RL-based single object detectors in the literature.
Related papers
- Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
arXiv Detail & Related papers (2024-06-13T16:30:32Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary object detection (OVD) aims at seeking an optimal object detector capable of recognizing objects from both base and novel categories.
Recent advances leverage knowledge distillation to transfer insightful knowledge from pre-trained large-scale vision-language models to the task of object detection.
We present a novel OVD framework termed LBP to propose learning background prompts to harness explored implicit background knowledge.
arXiv Detail & Related papers (2024-06-01T17:32:26Z) - Efficient Parameter Mining and Freezing for Continual Object Detection [0.0]
We propose efficient ways to identify which layers are the most important for a network to maintain the performance of a detector across sequential updates.
The presented findings highlight the substantial advantages of layer-level parameter isolation in facilitating incremental learning within object detection models.
arXiv Detail & Related papers (2024-02-20T01:07:32Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
We study whether training procedures can be improved to yield better generalization capabilities in the resulting models.
We recommend a simple recipe for training dense encoders: Train on MSMARCO with parameter-efficient methods, such as LoRA, and opt for using in-batch negatives unless given well-constructed hard negatives.
arXiv Detail & Related papers (2023-11-16T10:42:58Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Sample-efficient Reinforcement Learning Representation Learning with
Curiosity Contrastive Forward Dynamics Model [17.41484483119774]
This paper considers a learning framework for Curiosity Contrastive Forward Dynamics Model (CCFDM) in achieving a more sample-efficient reinforcement learning (RL)
CCFDM incorporates a forward dynamics model (FDM) and performs contrastive learning to train its deep convolutional neural network-based image encoder (IE)
During training, CCFDM provides intrinsic rewards, produced based on FDM prediction error, encourages the curiosity of the RL agent to improve exploration.
arXiv Detail & Related papers (2021-03-15T10:08:52Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.