Atomic fluorescence collection into planar photonic devices
- URL: http://arxiv.org/abs/2408.07068v2
- Date: Fri, 23 Aug 2024 17:53:19 GMT
- Title: Atomic fluorescence collection into planar photonic devices
- Authors: Orion Smedley, Vighnesh Natarajan, Oscar Jaramillo, Hamim Mahmud Rivy, Karan K. Mehta,
- Abstract summary: Fluorescence collection from individual emitters plays a key role in state detection and remote entanglement generation.
Planar photonics have been demonstrated for robust and scalable addressing of trapped-ion systems.
We show that far-field photon collection efficiency can be simply expressed in terms of the fields associated with the collection optic at the emitter position alone.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluorescence collection from individual emitters plays a key role in state detection and remote entanglement generation, fundamental functionalities in many quantum platforms. Planar photonics have been demonstrated for robust and scalable addressing of trapped-ion systems, motivating consideration of similar elements for the complementary challenge of photon collection. Here, using an argument from the reciprocity principle, we show that far-field photon collection efficiency can be simply expressed in terms of the fields associated with the collection optic at the emitter position alone. We calculate collection efficiencies into ideal paraxial and fully vectorial focused Gaussian modes parameterized in terms of focal waist, and further quantify the modest enhancements possible with more general beam profiles, establishing design requirements for efficient collection. Towards practical implementation, we design, fabricate, and characterize a diffractive collection element operating at $\lambda=397$ nm predicted to offer a total 0.25\% collection efficiency into a single waveguide mode. A more efficient design with more demanding fabrication requirements would offer $1.14\%$, and we indicate avenues to improved devices approaching the limits predicted for ideal beams. We point out a particularly simple integrated waveguide configuration for polarization-based remote entanglement generation enabled by integrated collection.
Related papers
- Integrated photonic structures for photon-mediated entanglement of trapped ions [0.0]
We analyze structures monolithically fabricated with an ion trap for collecting ion-emitted photons.
We conclude that integrated photonics can support scalable systems of trapped-ions that can distribute quantum information via photon-mediated entanglement.
arXiv Detail & Related papers (2024-01-12T19:00:02Z) - On-demand indistinguishable and entangled photons using tailored cavity
designs [0.0]
We focus on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishability.
We demonstrate that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement.
We report non-trivial dependencies on system parameters and use the predictive power of our combined theoretical approach to determine the optimal range of Purcell enhancement.
arXiv Detail & Related papers (2023-03-24T09:26:03Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - The Truncated Metallo-dielectric Omnidirectional Reflector: Collecting
Single Photons in the Fundamental Gaussian Mode with 95% Efficiency [4.127645555053321]
We propose a novel antenna structure which funnels single photons from a single emitter into a low-divergence fundamental Gaussian mode.
Our device relies on the concept of creating an omnidirectional photonic bandgap to inhibit unwanted large-angle emission and to enhance small-angle defect-guided-mode emission.
arXiv Detail & Related papers (2020-08-05T10:09:46Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.