論文の概要: Post-Training Sparse Attention with Double Sparsity
- arxiv url: http://arxiv.org/abs/2408.07092v1
- Date: Sun, 11 Aug 2024 18:40:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 15:07:25.951599
- Title: Post-Training Sparse Attention with Double Sparsity
- Title(参考訳): 二重間隔による訓練後スパース注意
- Authors: Shuo Yang, Ying Sheng, Joseph E. Gonzalez, Ion Stoica, Lianmin Zheng,
- Abstract要約: ダブルスパシティ」は、このボトルネックを緩和するために設計された、訓練後スパースアテンション技術である。
Double Sparsityは、自己アテンションを計算するための重要なトークンのみを活用するトークンのスペシャリティと、重要なトークンを識別するための重要な機能チャネルを使用するチャネルのスペシャリティを組み合わせたものだ。
オフローディングにより、16.3$times$のデコード速度を、256Kのシークエンス長の最先端のソリューションと比較して達成する。
- 参考スコア(独自算出の注目度): 44.772593893621085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inference process for large language models is slow and memory-intensive, with one of the most critical bottlenecks being excessive Key-Value (KV) cache accesses. This paper introduces "Double Sparsity," a novel post-training sparse attention technique designed to alleviate this bottleneck by reducing KV cache access. Double Sparsity combines token sparsity, which focuses on utilizing only the important tokens for computing self-attention, with channel sparsity, an approach that uses important feature channels for identifying important tokens. Our key insight is that the pattern of channel sparsity is relatively static, allowing us to use offline calibration to make it efficient at runtime, thereby enabling accurate and efficient identification of important tokens. Moreover, this method can be combined with offloading to achieve significant memory usage reduction. Experimental results demonstrate that Double Sparsity can achieve \(\frac{1}{16}\) token and channel sparsity with minimal impact on accuracy across various tasks, including wiki-2 perplexity, key-value retrieval, and long context benchmarks with models including Llama-2-7B, Llama-2-70B, and Mixtral-8x7B. It brings up to a 14.1$\times$ acceleration in attention operations and a 1.9$\times$ improvement in end-to-end inference on GPUs. With offloading, it achieves a decoding speed acceleration of 16.3$\times$ compared to state-of-the-art solutions at a sequence length of 256K. Our code is publicly available at \url{https://github.com/andy-yang-1/DoubleSparse}.
- Abstract(参考訳): 大きな言語モデルの推論プロセスは遅く、メモリ集約的であり、最も重要なボトルネックの1つはキーバリュー(KV)キャッシュアクセス過剰である。
本稿では,KVキャッシュアクセスを削減し,このボトルネックを軽減するために設計された,新しい訓練後スパースアテンション技術である「ダブルスパシティ」を紹介する。
Double Sparsityは、自己アテンションを計算するための重要なトークンのみを活用するトークンのスペシャリティと、重要なトークンを識別するための重要な機能チャネルを使用するチャネルのスペシャリティを組み合わせたものだ。
私たちの重要な洞察は、チャネル空間のパターンは比較的静的であり、オフラインキャリブレーションを使用して実行時に効率良くし、重要なトークンの正確かつ効率的な識別を可能にします。
さらに、この手法をオフロードと組み合わせることで、メモリ使用量を大幅に削減することができる。
Llama-2-7B, Llama-2-70B, Mixtral-8x7B などのモデルを用いて, wiki-2 の難易度, キー値検索, 長期文脈ベンチマークなど, 各種タスクの精度に最小限の影響を伴って, ダブルスパシティは \(\frac{1}{16}\) トークンとチャネルスパシティを達成できることが実験的に証明された。
注意操作の14.1$\times$アクセラレーションとGPUのエンドツーエンド推論の1.9$\times$改善をもたらす。
オフローディングにより、16.3$\times$のデコード速度を、256Kのシークエンス長の最先端のソリューションと比較して達成する。
私たちのコードは、 \url{https://github.com/andy-yang-1/DoubleSparse}で公開されています。
関連論文リスト
- ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification and KV Cache Compression [29.163757099307553]
大型視覚言語モデル(LVLM)のための効率的な推論フレームワークZipVLを提案する。
ZipVLは重要なトークンの動的比割り当て戦略によって計算とメモリのボトルネックを解消する。
実験によると、ZipVLはプリフィルフェーズを2.6$times$で加速し、GPUメモリ使用量を50.0%削減できる。
論文 参考訳(メタデータ) (2024-10-11T07:24:21Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification [19.985314022860432]
KVキャッシュは、再計算を避けるために、以前のトークンからキーと値の状態を格納する。
KVキャッシュ圧縮はトークンの正当性を識別し、重要でないトークンを積極的に圧縮しながら重要な情報を保存する。
LLMの高精度かつ効率的なKVキャッシュ量子化手法ZipCacheを提案する。
論文 参考訳(メタデータ) (2024-05-23T07:37:16Z) - Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference [2.8241099113277666]
キーフォーマー」は、KVキャッシュサイズとメモリ帯域幅利用に関する課題を軽減する革新的な推論時アプローチである。
我々はKeyformerの性能を,GPT-J,Cerebras-GPT,MPTの3つの基礎モデルで評価した。
論文 参考訳(メタデータ) (2024-03-14T02:42:42Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - SubGen: Token Generation in Sublinear Time and Memory [48.35076900702408]
大規模言語モデル(LLM)はトークン生成に広範なメモリ要件を持つ。
本研究では,KVキャッシュの効率的な圧縮手法の開発に焦点をあてる。
我々は,キートークンにオンラインクラスタリングを導入し,値に$ell$をサンプリングする,サブ線形複雑性を持つ新しいキャッシング手法を考案した。
このアルゴリズムは、サブリニアメモリフットプリントとサブリニアタイムの複雑さを保証するだけでなく、我々のアプローチに厳密なエラーを課す。
論文 参考訳(メタデータ) (2024-02-08T22:17:40Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z) - H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large
Language Models [110.06476624089679]
メモリフットプリントを大幅に削減する新しいKVキャッシュの実装手法を提案する。
我々のアプローチは、トークンのごく一部が、注意点の計算において、ほとんどの価値に寄与する、という観察に基づいている。
我々は,最近のトークンとH$のバランスを動的に保持するKVキャッシュ消去ポリシーであるヘビーヒッター(H$O)を提案する。
論文 参考訳(メタデータ) (2023-06-24T20:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。