論文の概要: ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification and KV Cache Compression
- arxiv url: http://arxiv.org/abs/2410.08584v1
- Date: Fri, 11 Oct 2024 07:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 23:04:57.365709
- Title: ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification and KV Cache Compression
- Title(参考訳): ZipVL:動的トークンスカラー化とKVキャッシュ圧縮を併用した高能率視覚言語モデル
- Authors: Yefei He, Feng Chen, Jing Liu, Wenqi Shao, Hong Zhou, Kaipeng Zhang, Bohan Zhuang,
- Abstract要約: 大型視覚言語モデル(LVLM)のための効率的な推論フレームワークZipVLを提案する。
ZipVLは重要なトークンの動的比割り当て戦略によって計算とメモリのボトルネックを解消する。
実験によると、ZipVLはプリフィルフェーズを2.6$times$で加速し、GPUメモリ使用量を50.0%削減できる。
- 参考スコア(独自算出の注目度): 29.163757099307553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficiency of large vision-language models (LVLMs) is constrained by the computational bottleneck of the attention mechanism during the prefill phase and the memory bottleneck of fetching the key-value (KV) cache in the decoding phase, particularly in scenarios involving high-resolution images or videos. Visual content often exhibits substantial redundancy, resulting in highly sparse attention maps within LVLMs. This sparsity can be leveraged to accelerate attention computation or compress the KV cache through various approaches. However, most studies focus on addressing only one of these bottlenecks and do not adequately support dynamic adjustment of sparsity concerning distinct layers or tasks. In this paper, we present ZipVL, an efficient inference framework designed for LVLMs that resolves both computation and memory bottlenecks through a dynamic ratio allocation strategy of important tokens. This ratio is adaptively determined based on the layer-specific distribution of attention scores, rather than fixed hyper-parameters, thereby improving efficiency for less complex tasks while maintaining high performance for more challenging ones. Then we select important tokens based on their normalized attention scores and perform attention mechanism solely on those important tokens to accelerate the prefill phase. To mitigate the memory bottleneck in the decoding phase, we employ mixed-precision quantization to the KV cache, where high-bit quantization is used for caches of important tokens, while low-bit quantization is applied to those of less importance. Our experiments demonstrate that ZipVL can accelerate the prefill phase by 2.6$\times$ and reduce GPU memory usage by 50.0%, with a minimal accuracy reduction of only 0.2% on Video-MME benchmark over LongVA-7B model, effectively enhancing the generation efficiency of LVLMs.
- Abstract(参考訳): 大規模視覚言語モデル(LVLM)の効率は、プリフィルフェーズにおける注意機構の計算的ボトルネックと、特に高解像度画像やビデオを含むシナリオにおいて、デコードフェーズにおいてキー値(KV)キャッシュを取得する際のメモリボトルネックによって制約される。
視覚コンテンツは、しばしば相当な冗長性を示し、その結果、LVLM内の高度に疎い注意マップが生成される。
この空間は、注意計算を加速したり、様々なアプローチでKVキャッシュを圧縮するために利用することができる。
しかしながら、ほとんどの研究はこれらのボトルネックの1つにのみ対処することに集中しており、異なる層やタスクに関する空間の動的調整を適切にサポートしていない。
本稿では,LVLMのための効率的な推論フレームワークZipVLを提案する。
この比率は、固定されたハイパーパラメータではなく、アテンションスコアの層別分布に基づいて適応的に決定される。
次に,正規化された注目スコアに基づいて重要なトークンを選択し,それらの重要なトークンのみにアテンション機構を実行し,プリフィルフェーズを高速化する。
復号フェーズにおけるメモリボトルネックを軽減するため、KVキャッシュに混合精度量子化を適用し、重要トークンのキャッシュにハイビット量子化を用いる一方、重要でないキャッシュには低ビット量子化を適用する。
実験により、ZipVLはプリフィルフェーズを2.6$\times$で高速化し、GPUメモリ使用量を50.0%削減できることを示した。
関連論文リスト
- Anchor Attention, Small Cache: Code Generation with Large Language Models [15.94784908771546]
NLPの現在のプラクティスは、コード生成タスクにおいて、不正確な、あるいは幻覚を引き起こす可能性のある、スパースアテンションを使用することが多い。
本稿では,コンテキスト情報を抽出・圧縮するトークン・アンカー・アテンションを特徴とする新しいアプローチであるAnchorCoderを提案する。
モデルの性能の大部分を保ちながら、KVキャッシュの要求を大幅に削減できる(少なくとも70%)。
論文 参考訳(メタデータ) (2024-11-11T02:47:05Z) - VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
VLM(Vision-Language Models)は、多目的なタスクセットにまたがる印象的なパフォーマンスを実証している。
キーバリュー(KV)キャッシュは、画像やビデオなどの長い視覚的コンテキストをエンコードする。
既存のKVキャッシュ圧縮手法は大規模言語モデル(LLM)に有効である
VLM推論の高速化に適した新しいKVキャッシュ圧縮レシピを提案する。
論文 参考訳(メタデータ) (2024-10-29T20:04:34Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
キーバリューキャッシュサイズを減らすための既存のアプローチは、圧縮戦略を学ぶためのモデルを微調整するか、シーケンス長を減らすためにアテンションスコアを利用するかのいずれかである。
キャッシュされたKVペアに対して、$L$とアテンションスコアとの間に明らかな相関関係が見られ、キー埋め込みの低い$L$がデコード時に高いアテンションスコアをもたらす。
実験の結果,この単純な手法により,言語モデリングやニードル・イン・ア・ヘイスタックタスクでは50%,パスキー検索タスクでは90%,精度を損なうことなく,KVキャッシュサイズを50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T11:35:16Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference [2.8241099113277666]
キーフォーマー」は、KVキャッシュサイズとメモリ帯域幅利用に関する課題を軽減する革新的な推論時アプローチである。
我々はKeyformerの性能を,GPT-J,Cerebras-GPT,MPTの3つの基礎モデルで評価した。
論文 参考訳(メタデータ) (2024-03-14T02:42:42Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
視覚的トークンに対する注意計算は,LVLMの深い層において極めて非効率であることがわかった。
本稿では,計算効率の最適化を目的とした多用途プラグアンドプレイ方式であるFastVを紹介する。
論文 参考訳(メタデータ) (2024-03-11T14:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。