論文の概要: VulCatch: Enhancing Binary Vulnerability Detection through CodeT5 Decompilation and KAN Advanced Feature Extraction
- arxiv url: http://arxiv.org/abs/2408.07181v1
- Date: Tue, 13 Aug 2024 19:46:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:45:31.869302
- Title: VulCatch: Enhancing Binary Vulnerability Detection through CodeT5 Decompilation and KAN Advanced Feature Extraction
- Title(参考訳): VulCatch: CodeT5デコンパイルとkan Advanced Feature extractによるバイナリ脆弱性検出の強化
- Authors: Abdulrahman Hamman Adama Chukkol, Senlin Luo, Kashif Sharif, Yunusa Haruna, Muhammad Muhammad Abdullahi,
- Abstract要約: VulCatchはバイナリレベルの脆弱性検出フレームワークである。
生のバイナリコードをコードT5を使って擬似コードに変換する。
高い検出精度(98.88%)と精度(97.92%)を達成するために、Word2vec、Inception Blocks、BiLSTM Attention、Residual接続を使用している。
- 参考スコア(独自算出の注目度): 2.2602594453321063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary program vulnerability detection is critical for software security, yet existing deep learning approaches often rely on source code analysis, limiting their ability to detect unknown vulnerabilities. To address this, we propose VulCatch, a binary-level vulnerability detection framework. VulCatch introduces a Synergy Decompilation Module (SDM) and Kolmogorov-Arnold Networks (KAN) to transform raw binary code into pseudocode using CodeT5, preserving high-level semantics for deep analysis with tools like Ghidra and IDA. KAN further enhances feature transformation, enabling the detection of complex vulnerabilities. VulCatch employs word2vec, Inception Blocks, BiLSTM Attention, and Residual connections to achieve high detection accuracy (98.88%) and precision (97.92%), while minimizing false positives (1.56%) and false negatives (2.71%) across seven CVE datasets.
- Abstract(参考訳): バイナリプログラムの脆弱性検出はソフトウェアセキュリティにとって重要であるが、既存のディープラーニングアプローチはソースコード解析に依存しており、未知の脆弱性を検出する能力を制限する。
そこで本研究では,バイナリレベルの脆弱性検出フレームワークであるVulCatchを提案する。
VulCatchはSynergy Decompilation Module (SDM)とKolmogorov-Arnold Networks (KAN)を導入し、生のバイナリコードをCodeT5を使って擬似コードに変換する。
KANはさらに機能変換を強化し、複雑な脆弱性の検出を可能にしている。
VulCatchは、Word2vec、Inception Blocks、BiLSTM Attention、Residual接続を使用して、高い検出精度(98.88%)と精度(97.92%)を実現し、偽陽性(1.56%)と偽陰性(2.71%)を7つのCVEデータセットで最小化している。
関連論文リスト
- Enhancing Reverse Engineering: Investigating and Benchmarking Large Language Models for Vulnerability Analysis in Decompiled Binaries [2.696054049278301]
新しくコンパイルされたバイナリコード脆弱性データセットであるDeBinVulを紹介します。
DeBinVulを使って最先端のLLMを微調整し、バイナリコード脆弱性の検出においてパフォーマンスが19%、24%、21%向上したことを報告します。
論文 参考訳(メタデータ) (2024-11-07T18:54:31Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - Bridging the Gap Between End-to-End and Two-Step Text Spotting [88.14552991115207]
ブリッジングテキストスポッティングは、2段階のメソッドでエラーの蓄積と最適化性能の問題を解決する新しいアプローチである。
提案手法の有効性を広範囲な実験により実証する。
論文 参考訳(メタデータ) (2024-04-06T13:14:04Z) - FoC: Figure out the Cryptographic Functions in Stripped Binaries with LLMs [54.27040631527217]
削除されたバイナリの暗号関数を抽出するFoCと呼ばれる新しいフレームワークを提案する。
まず、自然言語における暗号関数のセマンティクスを要約するために、バイナリ大言語モデル(FoC-BinLLM)を構築した。
次に、FoC-BinLLM上にバイナリコード類似モデル(FoC-Sim)を構築し、変更に敏感な表現を作成し、データベース内の未知の暗号関数の類似実装を検索する。
論文 参考訳(メタデータ) (2024-03-27T09:45:33Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINERは、粗いレベルの脆弱なコードスニペットから脆弱性クリティカルなコード行を見つけるためのツールである。
C/C++の一般的な8つの脆弱性に対して、90%の精度で脆弱性をトリガするコードステートメントにフラグを付けることができる。
論文 参考訳(メタデータ) (2024-01-05T10:15:04Z) - VMCDL: Vulnerability Mining Based on Cascaded Deep Learning Under Source
Control Flow [2.561778620560749]
本稿では,主にSARDデータセットのc/c++ソースコードデータを用いて,CWE476,CWE469,CWE516,CWE570の脆弱性型のソースコードを処理する。
本稿では,ソースコード制御フローに基づく新しいカスケード深層学習モデルVMCDLを提案し,脆弱性を効果的に検出する。
論文 参考訳(メタデータ) (2023-03-13T13:58:39Z) - Deep-Learning-based Vulnerability Detection in Binary Executables [0.0]
本稿では,リカレントニューラルネットワークを用いた教師付き深層学習手法を提案する。
LLVM中間表現を標準化した形で、脆弱なコードの50,651個のデータセットを使用する。
任意の脆弱性の存在を検出するためにバイナリ分類が確立され、正確な脆弱性を特定するためにマルチクラスモデルが訓練された。
論文 参考訳(メタデータ) (2022-11-25T10:33:33Z) - VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase
for Python [8.810543294798485]
VUDENCはディープラーニングベースの脆弱性検出ツールである。
大規模で現実世界のPythonコーパスから脆弱性のあるコードの特徴を学ぶ。
VUDENCのリコール率は78%-87%、精度82%-96%、F1スコア80%-90%である。
論文 参考訳(メタデータ) (2022-01-20T20:29:22Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。