論文の概要: Pan-cancer gene set discovery via scRNA-seq for optimal deep learning based downstream tasks
- arxiv url: http://arxiv.org/abs/2408.07233v1
- Date: Tue, 13 Aug 2024 23:24:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:35:46.754735
- Title: Pan-cancer gene set discovery via scRNA-seq for optimal deep learning based downstream tasks
- Title(参考訳): 下流タスクに基づく最適深層学習のためのcRNA-seqを用いたパン・カンサー遺伝子セットの探索
- Authors: Jong Hyun Kim, Jongseong Jang,
- Abstract要約: 腫瘍生検181例のscRNA-seqデータを13種類の癌で解析した。
高次元重み付き遺伝子共発現ネットワーク解析(hdWGCNA)を行い、関連遺伝子群を同定した。
多層パーセプトロン(MLP)やグラフニューラルネットワーク(GNN)を含むディープラーニングモデルを用いたOncoKBのオンコジーンの評価
- 参考スコア(独自算出の注目度): 6.869831177092736
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The application of machine learning to transcriptomics data has led to significant advances in cancer research. However, the high dimensionality and complexity of RNA sequencing (RNA-seq) data pose significant challenges in pan-cancer studies. This study hypothesizes that gene sets derived from single-cell RNA sequencing (scRNA-seq) data will outperform those selected using bulk RNA-seq in pan-cancer downstream tasks. We analyzed scRNA-seq data from 181 tumor biopsies across 13 cancer types. High-dimensional weighted gene co-expression network analysis (hdWGCNA) was performed to identify relevant gene sets, which were further refined using XGBoost for feature selection. These gene sets were applied to downstream tasks using TCGA pan-cancer RNA-seq data and compared to six reference gene sets and oncogenes from OncoKB evaluated with deep learning models, including multilayer perceptrons (MLPs) and graph neural networks (GNNs). The XGBoost-refined hdWGCNA gene set demonstrated higher performance in most tasks, including tumor mutation burden assessment, microsatellite instability classification, mutation prediction, cancer subtyping, and grading. In particular, genes such as DPM1, BAD, and FKBP4 emerged as important pan-cancer biomarkers, with DPM1 consistently significant across tasks. This study presents a robust approach for feature selection in cancer genomics by integrating scRNA-seq data and advanced analysis techniques, offering a promising avenue for improving predictive accuracy in cancer research.
- Abstract(参考訳): 機械学習の転写学データへの応用は、がん研究に大きな進歩をもたらした。
しかし、RNAシークエンシング(RNA-seq)データの高次元性と複雑さは、パン・カンサー研究において大きな課題となっている。
本研究は、単細胞RNAシークエンシング(scRNA-seq)データ由来の遺伝子セットが、パン・カンサー下流タスクにおいてバルクRNA-seqを用いて選択された遺伝子セットよりも優れていると仮定する。
腫瘍生検181例のscRNA-seqデータを13種類の癌で解析した。
高次元重み付き遺伝子共発現ネットワーク解析 (hdWGCNA) を行い, 関連遺伝子群を同定した。
これらの遺伝子セットをTCGAパンキャンサーRNA-seqデータを用いて下流タスクに適用し、マルチレイヤーパーセプトロン(MLP)やグラフニューラルネットワーク(GNN)を含むディープラーニングモデルを用いて評価したOncoKBの6つの参照遺伝子セットとオンコジーンと比較した。
XGBoostを精製したhdWGCNA遺伝子セットは、腫瘍突然変異負担評価、マイクロサテライト不安定性分類、突然変異予測、癌サブタイプ、グレーディングなど、ほとんどのタスクにおいて高いパフォーマンスを示した。
特に、DPM1、BAD、FKBP4などの遺伝子は重要な膵臓バイオマーカーとして出現し、DPM1はタスク全体で一貫して重要な役割を担った。
本研究は,scRNA-seqデータと高度な解析技術を統合することにより,がんゲノム学における特徴選択のための堅牢なアプローチを示し,がん研究における予測精度の向上に期待できる道を提供する。
関連論文リスト
- Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI [0.9423257767158634]
本研究では,33種類の異なる癌とその対応する遺伝子群を正確に同定するための包括的パイプラインを提案する。
正規化と特徴選択技術を組み合わせて、データセットの次元性を効果的に削減する。
我々はExplainable AIを利用して、同定された癌特異的遺伝子の生物学的意義を解明する。
論文 参考訳(メタデータ) (2024-10-08T18:56:31Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
グラフニューラルネットワーク(GNN)は、セルタイプの自動分類に広く利用されている。
scBiGNNは2つのGNNモジュールから構成され、細胞型を識別する。
scBiGNNは、scRNA-seqデータから細胞型分類のための様々な方法より優れている。
論文 参考訳(メタデータ) (2023-12-16T03:54:26Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Gene-MOE: A sparsely gated prognosis and classification framework
exploiting pan-cancer genomic information [13.57379781623848]
そこで本研究では, RNA-seq解析フレームワークであるGene-MOEについて紹介する。
Gene-MOEは、分析精度を高めるために、MOE層とアテンションエキスパート層の混合物のポテンシャルを利用する。
事前訓練を通じて33種類のがんからパンがん情報を統合することで、過度に適合する課題に対処する。
論文 参考訳(メタデータ) (2023-11-29T07:09:25Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
我々はこれらの課題に対処し、脳内のscRNA-seq解析の精度を高めるために設計された基礎モデルであるscHyenaを紹介する。
scHyenaは、線形適応層、遺伝子埋め込みによる位置エンコーディング、および双方向ハイエナ演算子を備えている。
これにより、生データから情報を失うことなく、全長の scRNA-seq データを処理できる。
論文 参考訳(メタデータ) (2023-10-04T10:30:08Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Biomarker Gene Identification for Breast Cancer Classification [2.403531305046943]
本研究は,バイオマーカーの同定にサブタイプ分類に用いるディープニューラルネットワークによる解釈予測を用いた。
提案したアルゴリズムは、43個の差分表現された遺伝子シグネチャの発見に繋がった。
論文 参考訳(メタデータ) (2021-11-10T06:38:50Z) - Transcriptome-wide prediction of prostate cancer gene expression from
histopathology images using co-expression based convolutional neural networks [0.8874479658912061]
形態と遺伝子発現の関係を特異的にモデル化する新しい計算効率の高い手法を提案する。
前立腺癌におけるRNA塩基配列推定のためのCNNを用いた第1回トランスクリプトーム解析を行った。
論文 参考訳(メタデータ) (2021-04-19T13:50:25Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。