論文の概要: Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI
- arxiv url: http://arxiv.org/abs/2410.07260v1
- Date: Tue, 8 Oct 2024 18:56:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 21:26:45.640091
- Title: Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI
- Title(参考訳): 次元化と説明可能なAIによるmRNA遺伝子発現からの精密癌分類とバイオマーカー同定
- Authors: Farzana Tabassum, Sabrina Islam, Siana Rizwan, Masrur Sobhan, Tasnim Ahmed, Sabbir Ahmed, Tareque Mohmud Chowdhury,
- Abstract要約: 本研究では,33種類の異なる癌とその対応する遺伝子群を正確に同定するための包括的パイプラインを提案する。
正規化と特徴選択技術を組み合わせて、データセットの次元性を効果的に削減する。
我々はExplainable AIを利用して、同定された癌特異的遺伝子の生物学的意義を解明する。
- 参考スコア(独自算出の注目度): 0.9423257767158634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gene expression analysis is a critical method for cancer classification, enabling precise diagnoses through the identification of unique molecular signatures associated with various tumors. Identifying cancer-specific genes from gene expression values enables a more tailored and personalized treatment approach. However, the high dimensionality of mRNA gene expression data poses challenges for analysis and data extraction. This research presents a comprehensive pipeline designed to accurately identify 33 distinct cancer types and their corresponding gene sets. It incorporates a combination of normalization and feature selection techniques to reduce dataset dimensionality effectively while ensuring high performance. Notably, our pipeline successfully identifies a substantial number of cancer-specific genes using a reduced feature set of just 500, in contrast to using the full dataset comprising 19,238 features. By employing an ensemble approach that combines three top-performing classifiers, a classification accuracy of 96.61% was achieved. Furthermore, we leverage Explainable AI to elucidate the biological significance of the identified cancer-specific genes, employing Differential Gene Expression (DGE) analysis.
- Abstract(参考訳): 遺伝子発現解析は、がんの分類において重要な手法であり、様々な腫瘍に関連する特異な分子的シグネチャの同定を通じて、正確な診断を可能にする。
癌特異的遺伝子を遺伝子発現値から同定することで、よりカスタマイズされパーソナライズされた治療アプローチが可能になる。
しかし、mRNA遺伝子発現データの高次元性は、解析とデータ抽出の課題を提起する。
本研究では,33種類の異なる癌とその対応する遺伝子群を正確に同定するための包括的パイプラインを提案する。
正規化と特徴選択技術を組み合わせて、高い性能を確保しながらデータセットの次元性を効果的に削減する。
特に,119,238個の特徴からなる全データセットと対照的に,たった500個の特徴セットを用いて癌特異的遺伝子を同定した。
3つの最高性能の分類器を組み合わせたアンサンブルアプローチを用いることで、96.61%の分類精度が達成された。
さらに,特定癌特異的遺伝子の生物学的意義を解明するためにExplainable AIを活用し,差分遺伝子表現(DGE)解析を適用した。
関連論文リスト
- Multivariate Feature Selection and Autoencoder Embeddings of Ovarian Cancer Clinical and Genetic Data [2.973561339858947]
本研究は,卵巣癌(OC)における新規な臨床および遺伝マーカー発見のためのデータ駆動的アプローチについて検討する。
オートエンコーダ解析では、臨床特徴と臨床および遺伝データの組合せを用いて、より明確なパターンが出現した。
主要な臨床変数(手術の種類、ネオアジュバント化学療法など)と特定の遺伝子変異は、リスクの低い遺伝子因子と強い関連性を示した。
論文 参考訳(メタデータ) (2025-01-27T09:07:07Z) - Pan-cancer gene set discovery via scRNA-seq for optimal deep learning based downstream tasks [6.869831177092736]
腫瘍生検181例のscRNA-seqデータを13種類の癌で解析した。
高次元重み付き遺伝子共発現ネットワーク解析(hdWGCNA)を行い、関連遺伝子群を同定した。
多層パーセプトロン(MLP)やグラフニューラルネットワーク(GNN)を含むディープラーニングモデルを用いたOncoKBのオンコジーンの評価
論文 参考訳(メタデータ) (2024-08-13T23:24:36Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Gene-MOE: A sparsely gated prognosis and classification framework
exploiting pan-cancer genomic information [13.57379781623848]
そこで本研究では, RNA-seq解析フレームワークであるGene-MOEについて紹介する。
Gene-MOEは、分析精度を高めるために、MOE層とアテンションエキスパート層の混合物のポテンシャルを利用する。
事前訓練を通じて33種類のがんからパンがん情報を統合することで、過度に適合する課題に対処する。
論文 参考訳(メタデータ) (2023-11-29T07:09:25Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Biomarker Gene Identification for Breast Cancer Classification [2.403531305046943]
本研究は,バイオマーカーの同定にサブタイプ分類に用いるディープニューラルネットワークによる解釈予測を用いた。
提案したアルゴリズムは、43個の差分表現された遺伝子シグネチャの発見に繋がった。
論文 参考訳(メタデータ) (2021-11-10T06:38:50Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
低次元遺伝子バイオマーカーを発見するための,新しい,自動かつ教師なしのフレームワークを提案する。
本手法は,高次元中心型非監視クラスタリングアルゴリズムLP-Stabilityアルゴリズムに基づく。
私達の署名は免疫炎症および免疫砂漠の腫瘍の区別の有望な結果報告します。
論文 参考訳(メタデータ) (2021-02-11T09:04:45Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - Low-Rank Reorganization via Proportional Hazards Non-negative Matrix
Factorization Unveils Survival Associated Gene Clusters [9.773075235189525]
この研究において、Cox比例ハザードの回帰は生存制約を課すことでNMFと統合される。
ヒト癌遺伝子の発現データを用いて、提案手法は癌遺伝子の重要なクラスターを解明することができる。
発見された遺伝子クラスターは、豊富な生物学的含意を反映し、生存に関連するバイオマーカーの同定に役立つ。
論文 参考訳(メタデータ) (2020-08-09T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。