論文の概要: q-exponential family for policy optimization
- arxiv url: http://arxiv.org/abs/2408.07245v2
- Date: Thu, 3 Oct 2024 03:59:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 07:53:35.730715
- Title: q-exponential family for policy optimization
- Title(参考訳): 政策最適化のためのq-exponential family
- Authors: Lingwei Zhu, Haseeb Shah, Han Wang, Yukie Nagai, Martha White,
- Abstract要約: 本稿では、より広範な政策ファミリーについて検討する:$q$-exponential family。
このポリシーのファミリはフレキシブルで、ヘビーテールのポリシー(q>1$)とライトテールのポリシー(q>1$)の両方を仕様化できる。
- 参考スコア(独自算出の注目度): 20.24534119264188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Policy optimization methods benefit from a simple and tractable policy parametrization, usually the Gaussian for continuous action spaces. In this paper, we consider a broader policy family that remains tractable: the $q$-exponential family. This family of policies is flexible, allowing the specification of both heavy-tailed policies ($q>1$) and light-tailed policies ($q<1$). This paper examines the interplay between $q$-exponential policies for several actor-critic algorithms conducted on both online and offline problems. We find that heavy-tailed policies are more effective in general and can consistently improve on Gaussian. In particular, we find the Student's t-distribution to be more stable than the Gaussian across settings and that a heavy-tailed $q$-Gaussian for Tsallis Advantage Weighted Actor-Critic consistently performs well in offline benchmark problems. Our code is available at \url{https://github.com/lingweizhu/qexp}.
- Abstract(参考訳): 政策最適化法は、単純かつトラクタブルな政策パラメトリゼーション(通常は連続的な行動空間に対するガウス的)の恩恵を受ける。
本稿では、より広範な政策ファミリーについて検討する:$q$-exponential family。
このポリシーのファミリはフレキシブルで、ヘビーテールのポリシー(q>1$)とライトテールのポリシー(q<1$)の両方を仕様化できる。
本稿では,オンライン問題とオフライン問題の両方で実行されるアクター批判アルゴリズムに対する$q$-exponential Policyの相互作用について検討する。
ヘビーテールの政策は一般的により効果的であり、常にガウシアンを改善することができる。
特に,Tsallis Advantage Weighted Actor-Critic の高額な$q$-Gaussian は,オフラインベンチマーク問題において常に良好に動作する。
私たちのコードは \url{https://github.com/lingweizhu/qexp} で利用可能です。
関連論文リスト
- Information Theoretic Guarantees For Policy Alignment In Large Language Models [19.315342870604113]
参照ポリシーの下での報酬がガウス以下の尾を持つ場合、$sqrtmathsfKL$情報理論上界が成り立つことを示す。
また、$n$ポリシーの最高値として、$mathsfKL$上界が任意の$f$-divergenceに対して得られることを証明します。
論文 参考訳(メタデータ) (2024-06-09T18:41:50Z) - Oracle-Efficient Reinforcement Learning for Max Value Ensembles [7.404901768256101]
大または無限の状態空間における強化学習(RL)は、理論上、実験的に困難である。
この作業では、$textitmax-following Policy$と競合することを目指しています。
我々の主な成果は、構成ポリシーのみにアクセスすると、最大フォローポリシーと競合する効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2024-05-27T01:08:23Z) - Offline Imitation Learning with Suboptimal Demonstrations via Relaxed
Distribution Matching [109.5084863685397]
オフライン模倣学習(IL)は、環境と相互作用することなく、事前にコンパイルされたデモからパフォーマンスポリシーを学習する機能を提供する。
非対称な f-分割を明示的なサポート正規化に用いたRelaxDICEを提案する。
提案手法は,6つの標準連続制御環境において,最上位のオフライン手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-03-05T03:35:11Z) - Estimating Optimal Policy Value in General Linear Contextual Bandits [50.008542459050155]
多くのバンドイット問題において、政策によって達成可能な最大報酬は、前もって不明であることが多い。
我々は,最適政策が学習される前に,サブ線形データ構造における最適政策値を推定する問題を考察する。
V*$で問題依存上界を推定する,より実用的で効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-19T01:09:24Z) - Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators [88.54210578912554]
行動制約付きポリシー最適化は、オフライン強化学習に対処するための成功パラダイムであることが示されている。
本稿では,閉形式政策改善演算子を提案する。
我々は、標準的なD4RLベンチマークにおいて、最先端アルゴリズムに対するそれらの効果を実証的に実証した。
論文 参考訳(メタデータ) (2022-11-29T06:29:26Z) - Mutual Information Regularized Offline Reinforcement Learning [76.05299071490913]
我々は、データセットにおける状態と行動間の相互情報の観点から、オフラインRLにアプローチする新しいMISAフレームワークを提案する。
この下位境界の最適化は、オフラインデータセット上での一段階改善されたポリシーの可能性の最大化と等価であることを示す。
MISAの3つの異なる変種を導入し、より厳密な相互情報によりオフラインのRL性能が向上することを示した。
論文 参考訳(メタデータ) (2022-10-14T03:22:43Z) - On Gap-dependent Bounds for Offline Reinforcement Learning [40.92345387517103]
本稿では,オフライン強化学習におけるギャップ依存型サンプル複雑性の系統的研究を行う。
最適政策カバレッジの仮定の下では、最適な$Q$-函数に正の準最適差がある場合、その値は$Oleft(frac1epsilonright)$に改善することができる。
最適政策の訪問確率が正である状態に対して,行動政策の訪問確率が一様に低い場合,最適政策を特定する際のサンプルの複雑さは$frac1epsilon$とは無関係である。
論文 参考訳(メタデータ) (2022-06-01T01:44:12Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
ロバストな意思決定プロセス(MDP)は、システムのダイナミクスが変化している、あるいは部分的にしか知られていない決定問題をモデル化するためのフレームワークを提供する。
最近の研究は、長方形長方形の$L_p$頑健なMDPと正規化されたMDPの等価性を確立し、標準MDPと同じレベルの効率を享受する規則化されたポリシー反復スキームを導出した。
本研究では、政策改善のステップに焦点をあて、欲求政策と最適なロバストなベルマン作用素のための具体的な形式を導出する。
論文 参考訳(メタデータ) (2022-05-28T04:05:20Z) - Restless Bandits with Many Arms: Beating the Central Limit Theorem [25.639496138046546]
有限ホライズン・レスト・ブレイディット(有限ホライズン・レスト・ブレイディット)は、レコメンデーターシステム、アクティブラーニング、収益管理、その他多くの分野で重要な役割を果たしている。
最適ポリシーは、原理的には動的プログラミングを用いて計算できるが、計算に必要なスケールは腕数$N$で指数関数的にスケールする。
最適性ギャップが$O(1)$である流体プライオリティポリシと呼ばれる、非退化条件と、実用的に計算可能な新しいポリシーのクラスを特徴付ける。
論文 参考訳(メタデータ) (2021-07-25T23:27:12Z) - Policy Finetuning: Bridging Sample-Efficient Offline and Online
Reinforcement Learning [59.02541753781001]
本稿では、学習者が「参照ポリシー」にさらにアクセス可能なオンラインRLの政策微調整に関する理論的研究を開始する。
我々はまず、$varepsilon$$widetildeO(H3SCstar/varepsilon2)$のエピソード内で、ほぼ最適ポリシーを求める鋭いオフライン還元アルゴリズムを設計する。
次に、Omega(H3SminCstar, A/varepsilon2)$のサンプル複雑性を、任意のポリシー微調整アルゴリズムに対して低いバウンドで設定します。
論文 参考訳(メタデータ) (2021-06-09T08:28:55Z) - On the Convergence and Sample Efficiency of Variance-Reduced Policy
Gradient Method [38.34416337932712]
政策は、例えばREINFORCEのようなリッチな強化学習(RL)手法を生み出します。
しかし、そのようなメソッドが$epsilon$-optimal Policyを見つけるための最もよく知られたサンプルの複雑さは$mathcalO(epsilon-3)$である。
第一次政策最適化法の基本収束特性とサンプル効率について検討する。
論文 参考訳(メタデータ) (2021-02-17T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。