Image-Based Leopard Seal Recognition: Approaches and Challenges in Current Automated Systems
- URL: http://arxiv.org/abs/2408.07269v1
- Date: Wed, 14 Aug 2024 03:35:11 GMT
- Title: Image-Based Leopard Seal Recognition: Approaches and Challenges in Current Automated Systems
- Authors: Jorge Yero Salazar, Pablo Rivas, Renato Borras-Chavez, Sarah Kienle,
- Abstract summary: This paper examines the challenges and advancements in recognizing seals within their natural habitats using conventional photography.
We used the leopard seal, emphHydrurga leptonyx, a key species within Antarctic ecosystems, to review the different available methods found.
The advent of machine learning, particularly through the application of vision transformers, heralds a new era of efficiency and precision in species monitoring.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines the challenges and advancements in recognizing seals within their natural habitats using conventional photography, underscored by the emergence of machine learning technologies. We used the leopard seal, \emph{Hydrurga leptonyx}, a key species within Antarctic ecosystems, to review the different available methods found. As apex predators, Leopard seals are characterized by their significant ecological role and elusive nature so studying them is crucial to understand the health of their ecosystem. Traditional methods of monitoring seal species are often constrained by the labor-intensive and time-consuming processes required for collecting data, compounded by the limited insights these methods provide. The advent of machine learning, particularly through the application of vision transformers, heralds a new era of efficiency and precision in species monitoring. By leveraging state-of-the-art approaches in detection, segmentation, and recognition within digital imaging, this paper presents a synthesis of the current landscape, highlighting both the cutting-edge methodologies and the predominant challenges faced in accurately identifying seals through photographic data.
Related papers
- Understanding the Impact of Training Set Size on Animal Re-identification [36.37275024049744]
We show that species-specific characteristics, particularly intra-individual variance, have a notable effect on training data requirements.
We demonstrate the benefits of both local feature and end-to-end learning-based approaches.
arXiv Detail & Related papers (2024-05-24T23:15:52Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
We propose a conceptually simple but effective method to efficiently detect forged faces in an image.
The proposed scheme relies on a segmentation map that delivers meaningful high-level semantic information clues about the image.
The proposed model achieves state-of-the-art detection accuracy and remarkable localization performance.
arXiv Detail & Related papers (2021-07-13T02:59:31Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - I-Nema: A Biological Image Dataset for Nematode Recognition [3.1918817988202606]
Nematode worms are one of most abundant metazoan groups on the earth, occupying diverse ecological niches.
Accurate recognition or identification of nematodes are of great importance for pest control, soil ecology, bio-geography, habitat conservation and against climate changes.
Computer vision and image processing have witnessed a few successes in species recognition of nematodes; however, it is still in great demand.
arXiv Detail & Related papers (2021-03-15T12:29:37Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
We present an initial deep convolutional neural network model, trained on 2.9M images across 465 fine-grained species.
The long-term goal is to enable scientists to make conservation recommendations from near real-time analysis of species abundance and population health.
arXiv Detail & Related papers (2020-09-24T01:04:18Z) - Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning [8.784100314325395]
Holstein-Friesian cattle exhibit individually-characteristic black and white coat patterns visually akin to those arising from Turing's reaction-diffusion systems.
This work takes advantage of these natural markings in order to automate visual detection and biometric identification of individual Holstein-Friesians via convolutional neural networks and deep metric learning techniques.
arXiv Detail & Related papers (2020-06-16T14:41:55Z) - Face Identity Disentanglement via Latent Space Mapping [47.27253184341152]
We present a method that learns how to represent data in a disentangled way, with minimal supervision.
Our key insight is to decouple the processes of disentanglement and synthesis, by employing a leading pre-trained unconditional image generator, such as StyleGAN.
We show that our method successfully disentangles identity from other facial attributes, surpassing existing methods.
arXiv Detail & Related papers (2020-05-15T18:24:49Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
We develop a framework for automatic detection and recognition of individuals in different patterned species.
We use the recently proposed Faster-RCNN object detection framework to efficiently detect animals in images.
We evaluate our recognition system on zebra and jaguar images to show generalization to other patterned species.
arXiv Detail & Related papers (2020-05-06T15:29:21Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.