論文の概要: Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables
- arxiv url: http://arxiv.org/abs/2408.07282v1
- Date: Mon, 29 Jul 2024 06:29:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 03:47:26.535125
- Title: Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables
- Title(参考訳): ウェアラブルを用いた人間行動認識のための一貫性に基づく弱自己教師付き学習
- Authors: Taoran Sheng, Manfred Huber,
- Abstract要約: センサデータから人間の活動を認識するための弱自己教師型アプローチについて述べる。
提案手法は, クラスタリングアルゴリズムが, 基礎となる人間の行動を特定し, 分類する上で, 同等のパフォーマンスを達成するのに有効であることを示す。
- 参考スコア(独自算出の注目度): 1.565361244756411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the widely available embedded sensors in smartphones and other wearable devices make it easier to obtain data of human activities, recognizing different types of human activities from sensor-based data remains a difficult research topic in ubiquitous computing. One reason for this is that most of the collected data is unlabeled. However, many current human activity recognition (HAR) systems are based on supervised methods, which heavily rely on the labels of the data. We describe a weakly self-supervised approach in this paper that consists of two stages: (1) In stage one, the model learns from the nature of human activities by projecting the data into an embedding space where similar activities are grouped together; (2) In stage two, the model is fine-tuned using similarity information in a few-shot learning fashion using the similarity information of the data. This allows downstream classification or clustering tasks to benefit from the embeddings. Experiments on three benchmark datasets demonstrate the framework's effectiveness and show that our approach can help the clustering algorithm achieve comparable performance in identifying and categorizing the underlying human activities as pure supervised techniques applied directly to a corresponding fully labeled data set.
- Abstract(参考訳): スマートフォンなどのウェアラブルデバイスに内蔵されているセンサーは、人間の活動のデータを入手しやすくするが、センサベースのデータからさまざまな種類の人間の活動を認識することは、ユビキタスコンピューティングにおいて難しい研究課題である。
この理由の1つは、収集されたデータのほとんどはラベル付けされていないためである。
しかしながら、現在の人間活動認識(HAR)システムの多くは、データラベルに大きく依存する教師付き手法に基づいている。
本論文では,(1)同種の活動をグループ化した埋め込み空間にデータを投影することで,人間の活動の性質からモデルを学習し,(2)類似性情報を用いてモデルを微調整する,という2つの段階からなる,弱い自己教師型アプローチについて述べる。
これにより、下流の分類やクラスタリングタスクが埋め込みの恩恵を受けることができる。
3つのベンチマークデータセットの実験は、このフレームワークの有効性を実証し、我々のアプローチがクラスタリングアルゴリズムが、対応する完全ラベル付きデータセットに直接適用される純粋な教師付き手法として、基礎となる人間の活動を特定し分類する上で同等のパフォーマンスを達成するのに役立つことを示した。
関連論文リスト
- Weakly Supervised Multi-Task Representation Learning for Human Activity
Analysis Using Wearables [2.398608007786179]
本稿では,データを複数の表現空間にマッピングする方法を学習する,弱教師付きマルチ出力シムネットワークを提案する。
データサンプルの表現は、そのアスペクトで同じ意味を持つデータが互いに密接な位置にあるような空間に配置される。
論文 参考訳(メタデータ) (2023-08-06T08:20:07Z) - Unsupervised Embedding Learning for Human Activity Recognition Using
Wearable Sensor Data [2.398608007786179]
我々は,人間の活動が密接な位置にある埋め込み空間に投影する,教師なしの手法を提案する。
3つのラベル付きベンチマークデータセットの実験結果は、フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-07-21T08:52:47Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - Self-Supervised Human Activity Recognition with Localized Time-Frequency
Contrastive Representation Learning [16.457778420360537]
スマートフォン加速度計データを用いた人間行動認識のための自己教師付き学習ソリューションを提案する。
加速度計信号から強い表現を学習し,クラスラベルへの依存度を低減させるモデルを開発した。
提案手法の性能をMotionSense, HAPT, HHARの3つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-08-26T22:47:18Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
本研究では,骨格データに基づく「相互作用対象の局所化」と「人間の行動認識」のための共同学習フレームワークを提案する。
本手法は,人間の行動認識のための最先端の手法を用いて,最高の,あるいは競争的な性能を実現する。
論文 参考訳(メタデータ) (2021-10-28T10:09:34Z) - Towards Deep Clustering of Human Activities from Wearables [21.198881633580797]
本研究では,ウェアラブルからの人間行動認識の基本的な問題に対して,教師なしのエンドツーエンド学習戦略を開発する。
本研究では,センサデータの教師なし表現を協調的に学習し,異なる人間の活動に強い意味的対応を持つクラスタ代入を生成する手法の有効性を示す。
論文 参考訳(メタデータ) (2020-08-02T13:55:24Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
人-物間相互作用(HOI)検出タスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関と反相関が存在することを観察した。
我々はこれらの先行知識を学習し、特に稀なクラスにおいてより効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T02:47:45Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
HAR(Human Activity Recognition)の分野は、監視装置(センサなど)から取得したデータを取得し、分析することに焦点を当てている。
我々は、異なる機械学習(ML)技術を用いて、人間のアクティビティを正確に認識する問題に対処する。
論文 参考訳(メタデータ) (2020-05-15T00:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。