論文の概要: RSEA-MVGNN: Multi-View Graph Neural Network with Reliable Structural Enhancement and Aggregation
- arxiv url: http://arxiv.org/abs/2408.07331v1
- Date: Wed, 14 Aug 2024 07:13:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:13:57.281964
- Title: RSEA-MVGNN: Multi-View Graph Neural Network with Reliable Structural Enhancement and Aggregation
- Title(参考訳): RSEA-MVGNN:信頼性の高い構造強化と集約を備えたマルチビューグラフニューラルネットワーク
- Authors: Junyu Chen, Long Shi, Badong Chen,
- Abstract要約: 信頼性の高い構造強化・集約型マルチビューグラフニューラルネットワーク(RSEA-MVGNN)を提案する。
RSEA-MVGNNは、ビュー特有の信念と不確実性を意見として学習し、ビュー品質を評価する。
5つの実世界のデータセットで実施された実験の結果、RSEA-MVGNNは最先端のGNNベースの手法よりも優れていた。
- 参考スコア(独自算出の注目度): 26.42386423708777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have exhibited remarkable efficacy in learning from multi-view graph data. In the framework of multi-view graph neural networks, a critical challenge lies in effectively combining diverse views, where each view has distinct graph structure features (GSFs). Existing approaches to this challenge primarily focus on two aspects: 1) prioritizing the most important GSFs, 2) utilizing GNNs for feature aggregation. However, prioritizing the most important GSFs can lead to limited feature diversity, and existing GNN-based aggregation strategies equally treat each view without considering view quality. To address these issues, we propose a novel Multi-View Graph Neural Network with Reliable Structural Enhancement and Aggregation (RSEA-MVGNN). Firstly, we estimate view-specific uncertainty employing subjective logic. Based on this uncertainty, we design reliable structural enhancement by feature de-correlation algorithm. This approach enables each enhancement to focus on different GSFs, thereby achieving diverse feature representation in the enhanced structure. Secondly, the model learns view-specific beliefs and uncertainty as opinions, which are utilized to evaluate view quality. Based on these opinions, the model enables high-quality views to dominate GNN aggregation, thereby facilitating representation learning. Experimental results conducted on five real-world datasets demonstrate that RSEA-MVGNN outperforms several state-of-the-art GNN-based methods.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,多視点グラフデータから学習において顕著な効果を示した。
マルチビューグラフニューラルネットワークのフレームワークでは、各ビューが異なるグラフ構造特徴(GSF)を持つ多様なビューを効果的に組み合わせることが重要な課題である。
この課題に対する既存のアプローチは、主に2つの側面に焦点を当てています。
1)最も重要なGSFの優先順位付け。
2) 特徴集約にGNNを利用する。
しかし、最も重要なGSFの優先順位付けは、機能の多様性を制限し、既存のGNNベースのアグリゲーション戦略は、ビューの品質を考慮せずに、それぞれのビューを等しく扱う。
これらの課題に対処するために,信頼性の高い構造強化・集約型マルチビューグラフニューラルネットワーク(RSEA-MVGNN)を提案する。
まず、主観的論理を用いた視点特異的不確実性を推定する。
この不確実性に基づいて,特徴デコリレーションアルゴリズムによる信頼性の高い構造拡張を設計する。
このアプローチにより、各エンハンスメントは異なるGSFにフォーカスでき、それによって拡張構造における多様な特徴表現が達成できる。
第2に、ビュー固有の信念と不確実性を意見として学習し、ビュー品質を評価する。
これらの意見に基づき、このモデルにより、高品質なビューがGNNアグリゲーションを支配し、表現学習を容易にすることができる。
5つの実世界のデータセットで実施された実験の結果、RSEA-MVGNNは最先端のGNNベースの手法よりも優れていた。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - BHGNN-RT: Network embedding for directed heterogeneous graphs [8.7024326813104]
本稿では,BHGNN-RTを用いた双方向ヘテロジニアスグラフニューラルネットワークの組込み手法を提案する。
BHGNN-RTの有効性と有効性を検証するために, 各種データセットの広範囲な実験を行った。
BHGNN-RTは、ノード分類と教師なしクラスタリングタスクの両方においてベンチマーク手法よりも優れた、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-24T10:56:09Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural
Network [59.860534520941485]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、異種情報ネットワーク(HIN)を扱う能力に優れていた。
近年,自己指導型学習は最もエキサイティングな学習パラダイムの1つとなり,ラベルがない場合に大きな可能性を示す。
本稿では,自己教師型HGNNの問題点を考察し,HGNNのための新しいコントラスト学習機構であるHeCoを提案する。
論文 参考訳(メタデータ) (2023-04-24T16:17:21Z) - Task-Agnostic Graph Neural Network Evaluation via Adversarial
Collaboration [11.709808788756966]
GraphACは、分子表現学習のためのグラフニューラルネットワーク(GNN)の研究を評価するための、原則付き、タスクに依存し、安定したフレームワークである。
2つのGNNが互いに直接競合することから、共同で自分自身を更新できる、競争力のあるバーロウツインズ(Competitive Barlow Twins)という新しい客観的機能を導入します。
論文 参考訳(メタデータ) (2023-01-27T03:33:11Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
差別化可能なノード選択(MGCN-DNS)を備えた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目的としている。
提案手法の有効性は,最先端手法と厳密な比較により検証した。
論文 参考訳(メタデータ) (2022-12-09T21:48:36Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
グラフニューラルネットワークのノード特徴集約ステップと深さを分離し、異なる集約特徴が予測性能にどのように寄与するかを経験的に分析する。
集約ステップによって生成された全ての機能が有用であるとは限らないことを示し、これらの少ない情報的特徴を用いることは、GNNモデルの性能に有害であることを示す。
提案モデルでは,提案モデルが最先端のGNNモデルと同等あるいはそれ以上の精度を達成可能であることを実証的に示す。
論文 参考訳(メタデータ) (2021-11-12T14:53:22Z) - Interpreting and Unifying Graph Neural Networks with An Optimization
Framework [47.44773358082203]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ学習に大きな注目を集めている。
本稿では,異なる伝搬機構と統一最適化問題との驚くほどの関連性を確立する。
提案する統一最適化フレームワークは,いくつかの代表的GNN間の共通性を要約し,柔軟に新しいGNNを設計する新たな機会を開く。
論文 参考訳(メタデータ) (2021-01-28T08:06:02Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。