Towards Few-shot Self-explaining Graph Neural Networks
- URL: http://arxiv.org/abs/2408.07340v1
- Date: Wed, 14 Aug 2024 07:31:11 GMT
- Title: Towards Few-shot Self-explaining Graph Neural Networks
- Authors: Jingyu Peng, Qi Liu, Linan Yue, Zaixi Zhang, Kai Zhang, Yunhao Sha,
- Abstract summary: We propose a novel framework that generates explanations to support predictions in few-shot settings.
MSE-GNN adopts a two-stage self-explaining structure, consisting of an explainer and a predictor.
We show that MSE-GNN can achieve superior performance on prediction tasks while generating high-quality explanations.
- Score: 16.085176689122036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Graph Neural Networks (GNNs) have spurred an upsurge of research dedicated to enhancing the explainability of GNNs, particularly in critical domains such as medicine. A promising approach is the self-explaining method, which outputs explanations along with predictions. However, existing self-explaining models require a large amount of training data, rendering them unavailable in few-shot scenarios. To address this challenge, in this paper, we propose a Meta-learned Self-Explaining GNN (MSE-GNN), a novel framework that generates explanations to support predictions in few-shot settings. MSE-GNN adopts a two-stage self-explaining structure, consisting of an explainer and a predictor. Specifically, the explainer first imitates the attention mechanism of humans to select the explanation subgraph, whereby attention is naturally paid to regions containing important characteristics. Subsequently, the predictor mimics the decision-making process, which makes predictions based on the generated explanation. Moreover, with a novel meta-training process and a designed mechanism that exploits task information, MSE-GNN can achieve remarkable performance on new few-shot tasks. Extensive experimental results on four datasets demonstrate that MSE-GNN can achieve superior performance on prediction tasks while generating high-quality explanations compared with existing methods. The code is publicly available at https://github.com/jypeng28/MSE-GNN.
Related papers
- SES: Bridging the Gap Between Explainability and Prediction of Graph Neural Networks [13.655670509818144]
We propose a self-explained and self-supervised graph neural network (SES) to bridge the gap between explainability and prediction.
SES comprises two processes: explainable training and enhanced predictive learning.
arXiv Detail & Related papers (2024-07-16T03:46:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Towards Prototype-Based Self-Explainable Graph Neural Network [37.90997236795843]
We study a novel problem of learning prototype-based self-explainable GNNs that can simultaneously give accurate predictions and prototype-based explanations on predictions.
The learned prototypes are also used to simultaneously make prediction for for a test instance and provide instance-level explanation.
arXiv Detail & Related papers (2022-10-05T00:47:42Z) - Task-Agnostic Graph Explanations [50.17442349253348]
Graph Neural Networks (GNNs) have emerged as powerful tools to encode graph structured data.
Existing learning-based GNN explanation approaches are task-specific in training.
We propose a Task-Agnostic GNN Explainer (TAGE) trained under self-supervision with no knowledge of downstream tasks.
arXiv Detail & Related papers (2022-02-16T21:11:47Z) - Towards the Explanation of Graph Neural Networks in Digital Pathology
with Information Flows [67.23405590815602]
Graph Neural Networks (GNNs) are widely adopted in digital pathology.
Existing explainers discover an explanatory subgraph relevant to the prediction.
An explanatory subgraph should be not only necessary for prediction, but also sufficient to uncover the most predictive regions.
We propose IFEXPLAINER, which generates a necessary and sufficient explanation for GNNs.
arXiv Detail & Related papers (2021-12-18T10:19:01Z) - ProtGNN: Towards Self-Explaining Graph Neural Networks [12.789013658551454]
We propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs.
ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
arXiv Detail & Related papers (2021-12-02T01:16:29Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
arXiv Detail & Related papers (2021-06-16T03:04:46Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.