論文の概要: RTAT: A Robust Two-stage Association Tracker for Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2408.07344v1
- Date: Wed, 14 Aug 2024 07:37:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:04:00.448454
- Title: RTAT: A Robust Two-stage Association Tracker for Multi-Object Tracking
- Title(参考訳): RTAT:マルチオブジェクトトラッキングのためのロバストな2段階アソシエーショントラッカー
- Authors: Song Guo, Rujie Liu, Narishige Abe,
- Abstract要約: RTATと呼ばれるロバスト2段アソシエーショントラッカーを提案する。
第1段のアソシエーションは、トラックレットと検出の間で行われ、高い純度でトラックレットを生成する。
第2段のアソシエーションはトラックレット間で行われ、完全な軌跡を形成する。
私たちのトラッカーは、主要なMOTメトリクスのほとんどでMOT17とMOT20ベンチマークのテストセットで第1位です。
- 参考スコア(独自算出の注目度): 12.406076162419877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data association is an essential part in the tracking-by-detection based Multi-Object Tracking (MOT). Most trackers focus on how to design a better data association strategy to improve the tracking performance. The rule-based handcrafted association methods are simple and highly efficient but lack generalization capability to deal with complex scenes. While the learnt association methods can learn high-order contextual information to deal with various complex scenes, but they have the limitations of higher complexity and cost. To address these limitations, we propose a Robust Two-stage Association Tracker, named RTAT. The first-stage association is performed between tracklets and detections to generate tracklets with high purity, and the second-stage association is performed between tracklets to form complete trajectories. For the first-stage association, we use a simple data association strategy to generate tracklets with high purity by setting a low threshold for the matching cost in the assignment process. We conduct the tracklet association in the second-stage based on the framework of message-passing GNN. Our method models the tracklet association as a series of edge classification problem in hierarchical graphs, which can recursively merge short tracklets into longer ones. Our tracker RTAT ranks first on the test set of MOT17 and MOT20 benchmarks in most of the main MOT metrics: HOTA, IDF1, and AssA. We achieve 67.2 HOTA, 84.7 IDF1, and 69.7 AssA on MOT17, and 66.2 HOTA, 82.5 IDF1, and 68.1 AssA on MOT20.
- Abstract(参考訳): データアソシエーションは、トラッキング・バイ・検出ベースのマルチオブジェクト・トラッキング(MOT)において不可欠な部分である。
ほとんどのトラッカーは、トラッキングパフォーマンスを改善するために、より良いデータアソシエーション戦略を設計する方法に重点を置いている。
ルールに基づく手作りアソシエーション法は単純で効率的であるが、複雑なシーンを扱うための一般化能力は欠如している。
学習したアソシエーション手法は、様々な複雑なシーンを扱うために高次文脈情報を学ぶことができるが、それらには複雑さとコストの制限がある。
これらの制約に対処するため,RTAT というロバスト2段アソシエーショントラッカーを提案する。
第1段のアソシエーションは、トラックレットと検出の間で行われ、高い純度でトラックレットを生成し、第2段のアソシエーションはトラックレット間で行われ、完全なトラジェクトリを形成する。
第1段階のアソシエーションでは、簡単なデータアソシエーション戦略を用いて、割り当てプロセスにおけるマッチングコストの閾値を低く設定することで、高純度トラックレットを生成する。
我々は、メッセージパッシングGNNの枠組みに基づいて、第2段階のトラックレットアソシエーションを行う。
提案手法は,トラックレット関連を階層グラフにおける一連のエッジ分類問題としてモデル化し,ショートトラックレットをより長いトラックレットに再帰的にマージする。
私たちのトラッカーRTATは、主要なMOT指標であるHOTA、IDF1、AssAのMOT17およびMOT20ベンチマークテストセットで第1位です。
67.2 HOTA,84.7 IDF1,69.7 AssA,66.2 HOTA,82.5 IDF1,68.1 AssAをMOT20上で達成した。
関連論文リスト
- Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
従来の検出によるトラッキングと、クエリによる新たなトラッキングだ。
本稿では,学習可能なアソシエータによって達成されるトラッキング・バイ・検出・クエリーのパラダイムを提案する。
トラッキング・バイ・クエリーモデルと比較すると、LAIDは特に訓練効率の高い競合追跡精度を達成している。
論文 参考訳(メタデータ) (2024-11-09T14:38:08Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Hierarchical IoU Tracking based on Interval [21.555469501789577]
マルチオブジェクト追跡(MOT)は、フレーム間で与えられたクラスのすべてのターゲットを検出し、関連付けることを目的としている。
HITと呼ばれる階層型IoU追跡フレームワークを提案し、トラックレット間隔を先行として利用して階層型追跡を実現する。
提案手法は,MOT17,KITTI,DanceTrack,VisDroneの4つのデータセットに対して有望な性能を実現する。
論文 参考訳(メタデータ) (2024-06-19T07:03:18Z) - Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object
Tracking [27.74953961900086]
既存のエンドツーエンドのマルチオブジェクト追跡(e2e-MOT)手法は、非エンドツーエンドのトラッキング・バイ・検出手法を超えていない。
本稿では,e2e-MOT をシャドウ概念を用いた新しいラベル割り当てにより,簡便かつ効果的な方法である Co-MOT を提案する。
論文 参考訳(メタデータ) (2023-05-22T05:18:34Z) - Tracking Every Thing in the Wild [61.917043381836656]
我々は,新しい測定基準であるTrack Every Thing Accuracy(TETA)を導入し,測定結果を3つのサブファクター(ローカライゼーション,アソシエーション,分類)に分割する。
実験の結果、TETAはトラッカーをより包括的に評価し、TETerはBDD100KとTAOに挑戦する大規模データセットを大幅に改善することがわかった。
論文 参考訳(メタデータ) (2022-07-26T15:37:19Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
特徴学習と関係モデリングを統合した新しい一ストリーム追跡(OSTrack)フレームワークを提案する。
このようにして、相互誘導により識別的目標指向特徴を動的に抽出することができる。
OSTrackは、複数のベンチマークで最先端のパフォーマンスを実現しており、特に、ワンショットトラッキングベンチマークのGOT-10kでは印象的な結果を示している。
論文 参考訳(メタデータ) (2022-03-22T18:37:11Z) - StrongSORT: Make DeepSORT Great Again [19.099510933467148]
我々は、古典的なトラッカーであるDeepSORTを再検討し、検出、埋め込み、関連付けといった様々な側面からアップグレードする。
結果、StrongSORTと呼ばれるトラッカーは、MOT17とMOT20に新しいHOTAとIDF1レコードをセットする。
追跡結果をさらに改善するために,軽量かつプラグアンドプレイのアルゴリズムを2つ提案する。
論文 参考訳(メタデータ) (2022-02-28T02:37:19Z) - Multi-object Tracking with Tracked Object Bounding Box Association [18.539658212171062]
CenterTrack Trackingアルゴリズムは,単純な検出モデルと単一フレーム空間オフセットを用いて,最先端のトラッキング性能を実現する。
本研究では,CenterTrackアルゴリズムに,現在のフレームに基づく単純なトラッキングオブジェクトバウンディングボックスと重複予測を組み込むことを提案する。
論文 参考訳(メタデータ) (2021-05-17T14:32:47Z) - Chained-Tracker: Chaining Paired Attentive Regression Results for
End-to-End Joint Multiple-Object Detection and Tracking [102.31092931373232]
そこで我々は,3つのサブタスク全てをエンド・ツー・エンドのソリューションに統合する簡単なオンラインモデルである Chained-Tracker (CTracker) を提案する。
鎖状構造と対の注意的回帰という2つの大きな特徴は、CTrackerをシンプルに、速く、効果的にする。
論文 参考訳(メタデータ) (2020-07-29T02:38:49Z) - Tracking by Instance Detection: A Meta-Learning Approach [99.66119903655711]
本稿では,高性能トラッカー構築のための3段階の原理的手法を提案する。
我々は2つの現代的な検出器であるRetinaNetとFCOSをベースに、Retina-MAMLとFCOS-MAMLという2つのトラッカーを構築した。
両方のトラッカーは40FPSでリアルタイムに動作します。
論文 参考訳(メタデータ) (2020-04-02T05:55:06Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。