Automated Retinal Image Analysis and Medical Report Generation through Deep Learning
- URL: http://arxiv.org/abs/2408.07349v1
- Date: Wed, 14 Aug 2024 07:47:25 GMT
- Title: Automated Retinal Image Analysis and Medical Report Generation through Deep Learning
- Authors: Jia-Hong Huang,
- Abstract summary: The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system.
Traditional methods of generating medical reports from retinal images rely on manual interpretation.
This thesis investigates the potential of Artificial Intelligence to automate medical report generation for retinal images.
- Score: 3.4447129363520337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system, as the demand for ophthalmologists surpasses the available workforce. This imbalance creates a bottleneck in diagnosis and treatment, potentially delaying critical care. Traditional methods of generating medical reports from retinal images rely on manual interpretation, which is time-consuming and prone to errors, further straining ophthalmologists' limited resources. This thesis investigates the potential of Artificial Intelligence (AI) to automate medical report generation for retinal images. AI can quickly analyze large volumes of image data, identifying subtle patterns essential for accurate diagnosis. By automating this process, AI systems can greatly enhance the efficiency of retinal disease diagnosis, reducing doctors' workloads and enabling them to focus on more complex cases. The proposed AI-based methods address key challenges in automated report generation: (1) Improved methods for medical keyword representation enhance the system's ability to capture nuances in medical terminology; (2) A multi-modal deep learning approach captures interactions between textual keywords and retinal images, resulting in more comprehensive medical reports; (3) Techniques to enhance the interpretability of the AI-based report generation system, fostering trust and acceptance in clinical practice. These methods are rigorously evaluated using various metrics and achieve state-of-the-art performance. This thesis demonstrates AI's potential to revolutionize retinal disease diagnosis by automating medical report generation, ultimately improving clinical efficiency, diagnostic accuracy, and patient care. [https://github.com/Jhhuangkay/DeepOpht-Medical-Report-Generation-for-Retinal-Images-via-Deep-Models- and-Visual-Explanation]
Related papers
- Adversarial Neural Networks in Medical Imaging Advancements and Challenges in Semantic Segmentation [6.88255677115486]
Recent advancements in artificial intelligence (AI) have precipitated a paradigm shift in medical imaging.
This paper systematically investigates the integration of deep learning -- a principal branch of AI -- into the semantic segmentation of brain images.
adversarial neural networks, a novel AI approach that not only automates but also refines the semantic segmentation process.
arXiv Detail & Related papers (2024-10-17T00:05:05Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
arXiv Detail & Related papers (2024-03-26T09:55:49Z) - Algorithm-based diagnostic application for diabetic retinopathy
detection [0.0]
Diabetic retinopathy is a growing health problem worldwide and is a leading cause of visual impairment and blindness.
Recent research in the field of diabetic retinopathy diagnosis is using advanced technologies, such as analysis of images obtained by ophthalmoscopy.
This paper describes an automatic DR diagnosis method that includes processing and analysis of ophthalmoscopic images of the eye.
arXiv Detail & Related papers (2023-12-01T12:09:06Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Explainable Artificial Intelligence in Retinal Imaging for the detection
of Systemic Diseases [0.0]
This study aims to evaluate an explainable staged grading process without using deep Convolutional Neural Networks (CNNs) directly.
We have proposed a clinician-in-the-loop assisted intelligent workflow that performs a retinal vascular assessment on the fundus images.
The semiautomatic methodology aims to have a federated approach to AI in healthcare applications with more inputs and interpretations from clinicians.
arXiv Detail & Related papers (2022-12-14T07:00:31Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.