Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends
- URL: http://arxiv.org/abs/2501.04073v1
- Date: Tue, 07 Jan 2025 18:53:14 GMT
- Title: Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends
- Authors: Duy M. H. Nguyen, Hasan Md Tusfiqur Alam, Tai Nguyen, Devansh Srivastav, Hans-Juergen Profitlich, Ngan Le, Daniel Sonntag,
- Abstract summary: The emergence of artificial intelligence (AI) has marked a new era in the realm of ophthalmology.
This review explores the cutting-edge applications of deep learning (DL) across a range of ocular conditions.
- Score: 7.893548922956548
- License:
- Abstract: The emergence of artificial intelligence (AI), particularly deep learning (DL), has marked a new era in the realm of ophthalmology, offering transformative potential for the diagnosis and treatment of posterior segment eye diseases. This review explores the cutting-edge applications of DL across a range of ocular conditions, including diabetic retinopathy, glaucoma, age-related macular degeneration, and retinal vessel segmentation. We provide a comprehensive overview of foundational ML techniques and advanced DL architectures, such as CNNs, attention mechanisms, and transformer-based models, highlighting the evolving role of AI in enhancing diagnostic accuracy, optimizing treatment strategies, and improving overall patient care. Additionally, we present key challenges in integrating AI solutions into clinical practice, including ensuring data diversity, improving algorithm transparency, and effectively leveraging multimodal data. This review emphasizes AI's potential to improve disease diagnosis and enhance patient care while stressing the importance of collaborative efforts to overcome these barriers and fully harness AI's impact in advancing eye care.
Related papers
- Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - The Role of Explainable AI in Revolutionizing Human Health Monitoring [0.0]
Explainable AI (XAI) offers greater clarity and has the potential to significantly improve patient care.
This literature review focuses on chronic conditions such as Parkinson's, stroke, depression, cancer, heart disease, and Alzheimer's disease.
The article is concluded with a critical appraisal of the challenges and future research opportunities for XAI in human health monitoring.
arXiv Detail & Related papers (2024-09-11T15:31:40Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system.
Traditional methods of generating medical reports from retinal images rely on manual interpretation.
This thesis investigates the potential of Artificial Intelligence to automate medical report generation for retinal images.
arXiv Detail & Related papers (2024-08-14T07:47:25Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Less is more: Ensemble Learning for Retinal Disease Recognition Under
Limited Resources [12.119196313470887]
This paper introduces a novel ensemble learning mechanism designed for recognizing retinal diseases under limited resources.
The mechanism leverages insights from multiple pre-trained models, facilitating the transfer and adaptation of their knowledge to Retinal OCT images.
arXiv Detail & Related papers (2024-02-15T06:58:25Z) - Deep Learning and Computer Vision for Glaucoma Detection: A Review [0.8379286663107844]
Glaucoma is the leading cause of irreversible blindness worldwide.
Recent advances in computer vision and deep learning have demonstrated the potential for automated assessment.
We survey recent studies on AI-based glaucoma diagnosis using fundus, optical coherence tomography, and visual field images.
arXiv Detail & Related papers (2023-07-31T09:49:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.